Sophie

Sophie

distrib > Mageia > 6 > armv7hl > media > core-updates > by-pkgid > 4e2dbb669434a7691662cb2f0ad38972 > files > 794

rust-doc-1.28.0-1.mga6.armv7hl.rpm

<!DOCTYPE HTML>
<html lang="en" class="sidebar-visible no-js">
    <head>
        <!-- Book generated using mdBook -->
        <meta charset="UTF-8">
        <title>Traits: Defining Shared Behavior - The Rust Programming Language</title>
        <meta content="text/html; charset=utf-8" http-equiv="Content-Type">
        <meta name="description" content="">
        <meta name="viewport" content="width=device-width, initial-scale=1">
        <meta name="theme-color" content="#ffffff" />

        <base href="">

        <link rel="stylesheet" href="book.css">
        <link href="https://fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800" rel="stylesheet" type="text/css">
        <link href="https://fonts.googleapis.com/css?family=Source+Code+Pro:500" rel="stylesheet" type="text/css">

        <link rel="shortcut icon" href="favicon.png">

        <!-- Font Awesome -->
        <link rel="stylesheet" href="_FontAwesome/css/font-awesome.css">

        <link rel="stylesheet" href="highlight.css">
        <link rel="stylesheet" href="tomorrow-night.css">
        <link rel="stylesheet" href="ayu-highlight.css">

        <!-- Custom theme stylesheets -->
        

        

    </head>
    <body class="light">
        <!-- Work around some values being stored in localStorage wrapped in quotes -->
        <script type="text/javascript">
            try {
                var theme = localStorage.getItem('mdbook-theme');
                var sidebar = localStorage.getItem('mdbook-sidebar');

                if (theme.startsWith('"') && theme.endsWith('"')) {
                    localStorage.setItem('mdbook-theme', theme.slice(1, theme.length - 1));
                }

                if (sidebar.startsWith('"') && sidebar.endsWith('"')) {
                    localStorage.setItem('mdbook-sidebar', sidebar.slice(1, sidebar.length - 1));
                }
            } catch (e) { }
        </script>

        <!-- Set the theme before any content is loaded, prevents flash -->
        <script type="text/javascript">
            var theme;
            try { theme = localStorage.getItem('mdbook-theme'); } catch(e) { } 
            if (theme === null || theme === undefined) { theme = 'light'; }
            document.body.className = theme;
            document.querySelector('html').className = theme + ' js';
        </script>

        <!-- Hide / unhide sidebar before it is displayed -->
        <script type="text/javascript">
            var html = document.querySelector('html');
            var sidebar = 'hidden';
            if (document.body.clientWidth >= 1080) {
                try { sidebar = localStorage.getItem('mdbook-sidebar'); } catch(e) { }
                sidebar = sidebar || 'visible';
            }
            html.classList.remove('sidebar-visible');
            html.classList.add("sidebar-" + sidebar);
        </script>

        <nav id="sidebar" class="sidebar" aria-label="Table of contents">
            <ol class="chapter"><li class="affix"><a href="foreword.html">Foreword</a></li><li class="affix"><a href="ch00-00-introduction.html">Introduction</a></li><li><a href="ch01-00-getting-started.html"><strong aria-hidden="true">1.</strong> Getting Started</a></li><li><ol class="section"><li><a href="ch01-01-installation.html"><strong aria-hidden="true">1.1.</strong> Installation</a></li><li><a href="ch01-02-hello-world.html"><strong aria-hidden="true">1.2.</strong> Hello, World!</a></li><li><a href="ch01-03-hello-cargo.html"><strong aria-hidden="true">1.3.</strong> Hello, Cargo!</a></li></ol></li><li><a href="ch02-00-guessing-game-tutorial.html"><strong aria-hidden="true">2.</strong> Programming a Guessing Game</a></li><li><a href="ch03-00-common-programming-concepts.html"><strong aria-hidden="true">3.</strong> Common Programming Concepts</a></li><li><ol class="section"><li><a href="ch03-01-variables-and-mutability.html"><strong aria-hidden="true">3.1.</strong> Variables and Mutability</a></li><li><a href="ch03-02-data-types.html"><strong aria-hidden="true">3.2.</strong> Data Types</a></li><li><a href="ch03-03-how-functions-work.html"><strong aria-hidden="true">3.3.</strong> How Functions Work</a></li><li><a href="ch03-04-comments.html"><strong aria-hidden="true">3.4.</strong> Comments</a></li><li><a href="ch03-05-control-flow.html"><strong aria-hidden="true">3.5.</strong> Control Flow</a></li></ol></li><li><a href="ch04-00-understanding-ownership.html"><strong aria-hidden="true">4.</strong> Understanding Ownership</a></li><li><ol class="section"><li><a href="ch04-01-what-is-ownership.html"><strong aria-hidden="true">4.1.</strong> What is Ownership?</a></li><li><a href="ch04-02-references-and-borrowing.html"><strong aria-hidden="true">4.2.</strong> References &amp; Borrowing</a></li><li><a href="ch04-03-slices.html"><strong aria-hidden="true">4.3.</strong> Slices</a></li></ol></li><li><a href="ch05-00-structs.html"><strong aria-hidden="true">5.</strong> Using Structs to Structure Related Data</a></li><li><ol class="section"><li><a href="ch05-01-defining-structs.html"><strong aria-hidden="true">5.1.</strong> Defining and Instantiating Structs</a></li><li><a href="ch05-02-example-structs.html"><strong aria-hidden="true">5.2.</strong> An Example Program Using Structs</a></li><li><a href="ch05-03-method-syntax.html"><strong aria-hidden="true">5.3.</strong> Method Syntax</a></li></ol></li><li><a href="ch06-00-enums.html"><strong aria-hidden="true">6.</strong> Enums and Pattern Matching</a></li><li><ol class="section"><li><a href="ch06-01-defining-an-enum.html"><strong aria-hidden="true">6.1.</strong> Defining an Enum</a></li><li><a href="ch06-02-match.html"><strong aria-hidden="true">6.2.</strong> The match Control Flow Operator</a></li><li><a href="ch06-03-if-let.html"><strong aria-hidden="true">6.3.</strong> Concise Control Flow with if let</a></li></ol></li><li><a href="ch07-00-modules.html"><strong aria-hidden="true">7.</strong> Modules</a></li><li><ol class="section"><li><a href="ch07-01-mod-and-the-filesystem.html"><strong aria-hidden="true">7.1.</strong> mod and the Filesystem</a></li><li><a href="ch07-02-controlling-visibility-with-pub.html"><strong aria-hidden="true">7.2.</strong> Controlling Visibility with pub</a></li><li><a href="ch07-03-importing-names-with-use.html"><strong aria-hidden="true">7.3.</strong> Referring to Names in Different Modules</a></li></ol></li><li><a href="ch08-00-common-collections.html"><strong aria-hidden="true">8.</strong> Common Collections</a></li><li><ol class="section"><li><a href="ch08-01-vectors.html"><strong aria-hidden="true">8.1.</strong> Vectors</a></li><li><a href="ch08-02-strings.html"><strong aria-hidden="true">8.2.</strong> Strings</a></li><li><a href="ch08-03-hash-maps.html"><strong aria-hidden="true">8.3.</strong> Hash Maps</a></li></ol></li><li><a href="ch09-00-error-handling.html"><strong aria-hidden="true">9.</strong> Error Handling</a></li><li><ol class="section"><li><a href="ch09-01-unrecoverable-errors-with-panic.html"><strong aria-hidden="true">9.1.</strong> Unrecoverable Errors with panic!</a></li><li><a href="ch09-02-recoverable-errors-with-result.html"><strong aria-hidden="true">9.2.</strong> Recoverable Errors with Result</a></li><li><a href="ch09-03-to-panic-or-not-to-panic.html"><strong aria-hidden="true">9.3.</strong> To panic! or Not To panic!</a></li></ol></li><li><a href="ch10-00-generics.html"><strong aria-hidden="true">10.</strong> Generic Types, Traits, and Lifetimes</a></li><li><ol class="section"><li><a href="ch10-01-syntax.html"><strong aria-hidden="true">10.1.</strong> Generic Data Types</a></li><li><a href="ch10-02-traits.html" class="active"><strong aria-hidden="true">10.2.</strong> Traits: Defining Shared Behavior</a></li><li><a href="ch10-03-lifetime-syntax.html"><strong aria-hidden="true">10.3.</strong> Validating References with Lifetimes</a></li></ol></li><li><a href="ch11-00-testing.html"><strong aria-hidden="true">11.</strong> Testing</a></li><li><ol class="section"><li><a href="ch11-01-writing-tests.html"><strong aria-hidden="true">11.1.</strong> Writing tests</a></li><li><a href="ch11-02-running-tests.html"><strong aria-hidden="true">11.2.</strong> Running tests</a></li><li><a href="ch11-03-test-organization.html"><strong aria-hidden="true">11.3.</strong> Test Organization</a></li></ol></li><li><a href="ch12-00-an-io-project.html"><strong aria-hidden="true">12.</strong> An I/O Project: Building a Command Line Program</a></li><li><ol class="section"><li><a href="ch12-01-accepting-command-line-arguments.html"><strong aria-hidden="true">12.1.</strong> Accepting Command Line Arguments</a></li><li><a href="ch12-02-reading-a-file.html"><strong aria-hidden="true">12.2.</strong> Reading a File</a></li><li><a href="ch12-03-improving-error-handling-and-modularity.html"><strong aria-hidden="true">12.3.</strong> Refactoring to Improve Modularity and Error Handling</a></li><li><a href="ch12-04-testing-the-librarys-functionality.html"><strong aria-hidden="true">12.4.</strong> Developing the Library’s Functionality with Test Driven Development</a></li><li><a href="ch12-05-working-with-environment-variables.html"><strong aria-hidden="true">12.5.</strong> Working with Environment Variables</a></li><li><a href="ch12-06-writing-to-stderr-instead-of-stdout.html"><strong aria-hidden="true">12.6.</strong> Writing Error Messages to Standard Error Instead of Standard Output</a></li></ol></li><li><a href="ch13-00-functional-features.html"><strong aria-hidden="true">13.</strong> Functional Language Features: Iterators and Closures</a></li><li><ol class="section"><li><a href="ch13-01-closures.html"><strong aria-hidden="true">13.1.</strong> Closures: Anonymous Functions that Can Capture Their Environment</a></li><li><a href="ch13-02-iterators.html"><strong aria-hidden="true">13.2.</strong> Processing a Series of Items with Iterators</a></li><li><a href="ch13-03-improving-our-io-project.html"><strong aria-hidden="true">13.3.</strong> Improving Our I/O Project</a></li><li><a href="ch13-04-performance.html"><strong aria-hidden="true">13.4.</strong> Comparing Performance: Loops vs. Iterators</a></li></ol></li><li><a href="ch14-00-more-about-cargo.html"><strong aria-hidden="true">14.</strong> More about Cargo and Crates.io</a></li><li><ol class="section"><li><a href="ch14-01-release-profiles.html"><strong aria-hidden="true">14.1.</strong> Customizing Builds with Release Profiles</a></li><li><a href="ch14-02-publishing-to-crates-io.html"><strong aria-hidden="true">14.2.</strong> Publishing a Crate to Crates.io</a></li><li><a href="ch14-03-cargo-workspaces.html"><strong aria-hidden="true">14.3.</strong> Cargo Workspaces</a></li><li><a href="ch14-04-installing-binaries.html"><strong aria-hidden="true">14.4.</strong> Installing Binaries from Crates.io with cargo install</a></li><li><a href="ch14-05-extending-cargo.html"><strong aria-hidden="true">14.5.</strong> Extending Cargo with Custom Commands</a></li></ol></li><li><a href="ch15-00-smart-pointers.html"><strong aria-hidden="true">15.</strong> Smart Pointers</a></li><li><ol class="section"><li><a href="ch15-01-box.html"><strong aria-hidden="true">15.1.</strong> Box<T> Points to Data on the Heap and Has a Known Size</a></li><li><a href="ch15-02-deref.html"><strong aria-hidden="true">15.2.</strong> The Deref Trait Allows Access to the Data Through a Reference</a></li><li><a href="ch15-03-drop.html"><strong aria-hidden="true">15.3.</strong> The Drop Trait Runs Code on Cleanup</a></li><li><a href="ch15-04-rc.html"><strong aria-hidden="true">15.4.</strong> Rc<T>, the Reference Counted Smart Pointer</a></li><li><a href="ch15-05-interior-mutability.html"><strong aria-hidden="true">15.5.</strong> RefCell<T> and the Interior Mutability Pattern</a></li><li><a href="ch15-06-reference-cycles.html"><strong aria-hidden="true">15.6.</strong> Creating Reference Cycles and Leaking Memory is Safe</a></li></ol></li><li><a href="ch16-00-concurrency.html"><strong aria-hidden="true">16.</strong> Fearless Concurrency</a></li><li><ol class="section"><li><a href="ch16-01-threads.html"><strong aria-hidden="true">16.1.</strong> Threads</a></li><li><a href="ch16-02-message-passing.html"><strong aria-hidden="true">16.2.</strong> Message Passing</a></li><li><a href="ch16-03-shared-state.html"><strong aria-hidden="true">16.3.</strong> Shared State</a></li><li><a href="ch16-04-extensible-concurrency-sync-and-send.html"><strong aria-hidden="true">16.4.</strong> Extensible Concurrency: Sync and Send</a></li></ol></li><li><a href="ch17-00-oop.html"><strong aria-hidden="true">17.</strong> Object Oriented Programming Features of Rust</a></li><li><ol class="section"><li><a href="ch17-01-what-is-oo.html"><strong aria-hidden="true">17.1.</strong> Characteristics of Object-Oriented Languages</a></li><li><a href="ch17-02-trait-objects.html"><strong aria-hidden="true">17.2.</strong> Using Trait Objects that Allow for Values of Different Types</a></li><li><a href="ch17-03-oo-design-patterns.html"><strong aria-hidden="true">17.3.</strong> Implementing an Object-Oriented Design Pattern</a></li></ol></li><li><a href="ch18-00-patterns.html"><strong aria-hidden="true">18.</strong> Patterns Match the Structure of Values</a></li><li><ol class="section"><li><a href="ch18-01-all-the-places-for-patterns.html"><strong aria-hidden="true">18.1.</strong> All the Places Patterns May be Used</a></li><li><a href="ch18-02-refutability.html"><strong aria-hidden="true">18.2.</strong> Refutability: Whether a Pattern Might Fail to Match</a></li><li><a href="ch18-03-pattern-syntax.html"><strong aria-hidden="true">18.3.</strong> All the Pattern Syntax</a></li></ol></li><li><a href="ch19-00-advanced-features.html"><strong aria-hidden="true">19.</strong> Advanced Features</a></li><li><ol class="section"><li><a href="ch19-01-unsafe-rust.html"><strong aria-hidden="true">19.1.</strong> Unsafe Rust</a></li><li><a href="ch19-02-advanced-lifetimes.html"><strong aria-hidden="true">19.2.</strong> Advanced Lifetimes</a></li><li><a href="ch19-03-advanced-traits.html"><strong aria-hidden="true">19.3.</strong> Advanced Traits</a></li><li><a href="ch19-04-advanced-types.html"><strong aria-hidden="true">19.4.</strong> Advanced Types</a></li><li><a href="ch19-05-advanced-functions-and-closures.html"><strong aria-hidden="true">19.5.</strong> Advanced Functions &amp; Closures</a></li></ol></li><li><a href="ch20-00-final-project-a-web-server.html"><strong aria-hidden="true">20.</strong> Final Project: Building a Multithreaded Web Server</a></li><li><ol class="section"><li><a href="ch20-01-single-threaded.html"><strong aria-hidden="true">20.1.</strong> A Single Threaded Web Server</a></li><li><a href="ch20-02-multithreaded.html"><strong aria-hidden="true">20.2.</strong> Turning our Single Threaded Server into a Multithreaded Server</a></li><li><a href="ch20-03-graceful-shutdown-and-cleanup.html"><strong aria-hidden="true">20.3.</strong> Graceful Shutdown and Cleanup</a></li></ol></li><li><a href="appendix-00.html"><strong aria-hidden="true">21.</strong> Appendix</a></li><li><ol class="section"><li><a href="appendix-01-keywords.html"><strong aria-hidden="true">21.1.</strong> A - Keywords</a></li><li><a href="appendix-02-operators.html"><strong aria-hidden="true">21.2.</strong> B - Operators and Symbols</a></li><li><a href="appendix-03-derivable-traits.html"><strong aria-hidden="true">21.3.</strong> C - Derivable Traits</a></li><li><a href="appendix-04-macros.html"><strong aria-hidden="true">21.4.</strong> D - Macros</a></li><li><a href="appendix-05-translation.html"><strong aria-hidden="true">21.5.</strong> E - Translations</a></li><li><a href="appendix-06-newest-features.html"><strong aria-hidden="true">21.6.</strong> F - Newest Features</a></li><li><a href="appendix-07-nightly-rust.html"><strong aria-hidden="true">21.7.</strong> G - How Rust is Made and “Nightly Rust”</a></li></ol></li></ol>
        </nav>

        <div id="page-wrapper" class="page-wrapper">

            <div class="page">
                
                <div id="menu-bar" class="menu-bar">
                    <div id="menu-bar-sticky-container">
                        <div class="left-buttons">
                            <button id="sidebar-toggle" class="icon-button" type="button" title="Toggle Table of Contents" aria-label="Toggle Table of Contents" aria-controls="sidebar">
                                <i class="fa fa-bars"></i>
                            </button>
                            <button id="theme-toggle" class="icon-button" type="button" title="Change theme" aria-label="Change theme" aria-haspopup="true" aria-expanded="false" aria-controls="theme-list">
                                <i class="fa fa-paint-brush"></i>
                            </button>
                            <ul id="theme-list" class="theme-popup" aria-label="Themes" role="menu">
                                <li role="none"><button role="menuitem" class="theme" id="light">Light <span class="default">(default)</span></button></li>
                                <li role="none"><button role="menuitem" class="theme" id="rust">Rust</button></li>
                                <li role="none"><button role="menuitem" class="theme" id="coal">Coal</button></li>
                                <li role="none"><button role="menuitem" class="theme" id="navy">Navy</button></li>
                                <li role="none"><button role="menuitem" class="theme" id="ayu">Ayu</button></li>
                            </ul>
                            
                            <button id="search-toggle" class="icon-button" type="button" title="Search. (Shortkey: s)" aria-label="Toggle Searchbar" aria-expanded="false" aria-keyshortcuts="S" aria-controls="searchbar">
                                <i class="fa fa-search"></i>
                            </button>
                            
                        </div>

                        <h1 class="menu-title">The Rust Programming Language</h1> 

                        <div class="right-buttons">
                            <a href="print.html" title="Print this book" aria-label="Print this book">
                                <i id="print-button" class="fa fa-print"></i>
                            </a>
                        </div>
                    </div>
                </div>

                
                <div id="search-wrapper" class="hidden">
                    <form id="searchbar-outer" class="searchbar-outer">
                        <input type="search" name="search" id="searchbar" name="searchbar" placeholder="Search this book ..." aria-controls="searchresults-outer" aria-describedby="searchresults-header">
                    </form>
                    <div id="searchresults-outer" class="searchresults-outer hidden">
                        <div id="searchresults-header" class="searchresults-header"></div>
                        <ul id="searchresults">
                        </ul>
                    </div>
                </div>
                

                <!-- Apply ARIA attributes after the sidebar and the sidebar toggle button are added to the DOM -->
                <script type="text/javascript">
                    document.getElementById('sidebar-toggle').setAttribute('aria-expanded', sidebar === 'visible');
                    document.getElementById('sidebar').setAttribute('aria-hidden', sidebar !== 'visible');
                    Array.from(document.querySelectorAll('#sidebar a')).forEach(function(link) {
                        link.setAttribute('tabIndex', sidebar === 'visible' ? 0 : -1);
                    });
                </script>

                <div id="content" class="content">
                    <main>
                        <a class="header" href="ch10-02-traits.html#traits-defining-shared-behavior" id="traits-defining-shared-behavior"><h2>Traits: Defining Shared Behavior</h2></a>
<p>A <em>trait</em> tells the Rust compiler about functionality a particular type has and
can share with other types. We can use traits to define shared behavior in an
abstract way. We can use trait bounds to specify that a generic can be any type
that has certain behavior.</p>
<blockquote>
<p>Note: Traits are similar to a feature often called <em>interfaces</em> in other
languages, although with some differences.</p>
</blockquote>
<a class="header" href="ch10-02-traits.html#defining-a-trait" id="defining-a-trait"><h3>Defining a Trait</h3></a>
<p>A type’s behavior consists of the methods we can call on that type. Different
types share the same behavior if we can call the same methods on all of those
types. Trait definitions are a way to group method signatures together to
define a set of behaviors necessary to accomplish some purpose.</p>
<p>For example, let’s say we have multiple structs that hold various kinds and
amounts of text: a <code>NewsArticle</code> struct that holds a news story filed in a
particular location and a <code>Tweet</code> that can have at most 280 characters along
with metadata that indicates whether it was a new tweet, a retweet, or a reply
to another tweet.</p>
<p>We want to make a media aggregator library that can display summaries of data
that might be stored in a <code>NewsArticle</code> or <code>Tweet</code> instance. To do this, we
need a summary from each type, and we need to request that summary by calling a
<code>summarize</code> method on an instance. Listing 10-12 shows the definition of a
<code>Summary</code> trait that expresses this behavior.</p>
<p><span class="filename">Filename: src/lib.rs</span></p>
<pre><pre class="playpen"><code class="language-rust">
# #![allow(unused_variables)]
#fn main() {
pub trait Summary {
    fn summarize(&amp;self) -&gt; String;
}
#}</code></pre></pre>
<p><span class="caption">Listing 10-12: A <code>Summary</code> trait that consists of the
behavior provided by a <code>summarize</code> method</span></p>
<p>Here, we declare a trait using the <code>trait</code> keyword and then the trait’s name,
which is <code>Summary</code> in this case. Inside the curly brackets, we declare the
method signatures that describe the behaviors of the types that implement this
trait, which in this case is <code>fn summarize(&amp;self) -&gt; String</code>.</p>
<p>After the method signature, instead of providing an implementation within curly
brackets, we use a semicolon. Each type implementing this trait must provide
its own custom behavior for the body of the method. The compiler will enforce
that any type that has the <code>Summary</code> trait will have the method <code>summarize</code>
defined with this signature exactly.</p>
<p>A trait can have multiple methods in its body: the method signatures are listed
one per line and each line ends in a semicolon.</p>
<a class="header" href="ch10-02-traits.html#implementing-a-trait-on-a-type" id="implementing-a-trait-on-a-type"><h3>Implementing a Trait on a Type</h3></a>
<p>Now that we’ve defined the desired behavior using the <code>Summary</code> trait, we can
implement it on the types in our media aggregator. Listing 10-13 shows an
implementation of the <code>Summary</code> trait on the <code>NewsArticle</code> struct that uses the
headline, the author, and the location to create the return value of
<code>summarize</code>. For the <code>Tweet</code> struct, we define <code>summarize</code> as the username
followed by the entire text of the tweet, assuming that tweet content is
already limited to 280 characters.</p>
<p><span class="filename">Filename: src/lib.rs</span></p>
<pre><pre class="playpen"><code class="language-rust">
# #![allow(unused_variables)]
#fn main() {
# pub trait Summary {
#     fn summarize(&amp;self) -&gt; String;
# }
#
pub struct NewsArticle {
    pub headline: String,
    pub location: String,
    pub author: String,
    pub content: String,
}

impl Summary for NewsArticle {
    fn summarize(&amp;self) -&gt; String {
        format!(&quot;{}, by {} ({})&quot;, self.headline, self.author, self.location)
    }
}

pub struct Tweet {
    pub username: String,
    pub content: String,
    pub reply: bool,
    pub retweet: bool,
}

impl Summary for Tweet {
    fn summarize(&amp;self) -&gt; String {
        format!(&quot;{}: {}&quot;, self.username, self.content)
    }
}
#}</code></pre></pre>
<p><span class="caption">Listing 10-13: Implementing the <code>Summary</code> trait on the
<code>NewsArticle</code> and <code>Tweet</code> types</span></p>
<p>Implementing a trait on a type is similar to implementing regular methods. The
difference is that after <code>impl</code>, we put the trait name that we want to
implement, then use the <code>for</code> keyword, and then specify the name of the type we
want to implement the trait for. Within the <code>impl</code> block, we put the method
signatures that the trait definition has defined. Instead of adding a semicolon
after each signature, we use curly brackets and fill in the method body with
the specific behavior that we want the methods of the trait to have for the
particular type.</p>
<p>After implementing the trait, we can call the methods on instances of
<code>NewsArticle</code> and <code>Tweet</code> in the same way we call regular methods, like this:</p>
<pre><code class="language-rust ignore">let tweet = Tweet {
    username: String::from(&quot;horse_ebooks&quot;),
    content: String::from(&quot;of course, as you probably already know, people&quot;),
    reply: false,
    retweet: false,
};

println!(&quot;1 new tweet: {}&quot;, tweet.summarize());
</code></pre>
<p>This code prints <code>1 new tweet: horse_ebooks: of course, as you probably already know, people</code>.</p>
<p>Note that because we defined the <code>Summary</code> trait and the <code>NewsArticle</code> and
<code>Tweet</code> types in the same <em>lib.rs</em> in Listing 10-13, they’re all in the same
scope. Let’s say this <em>lib.rs</em> is for a crate we’ve called <code>aggregator</code> and
someone else wants to use our crate’s functionality to implement the <code>Summary</code>
trait on a struct defined within their library’s scope. They would need to
import the trait into their scope first. They would do so by specifying <code>use aggregator::Summary;</code>, which then would enable them to implement <code>Summary</code> for
their type. The <code>Summary</code> trait would also need to be a public trait for
another crate to implement it, which it is because we put the <code>pub</code> keyword
before <code>trait</code> in Listing 10-12.</p>
<p>One restriction to note with trait implementations is that we can implement a
trait on a type only if either the trait or the type is local to our crate.
For example, we can implement standard library traits like <code>Display</code> on a
custom type like <code>Tweet</code> as part of our <code>aggregator</code> crate functionality,
because the type <code>Tweet</code> is local to our <code>aggregator</code> crate. We can also
implement <code>Summary</code> on <code>Vec&lt;T&gt;</code> in our <code>aggregator</code> crate, because the
trait <code>Summary</code> is local to our <code>aggregator</code> crate.</p>
<p>But we can’t implement external traits on external types. For example, we can’t
implement the <code>Display</code> trait on <code>Vec&lt;T&gt;</code> within our <code>aggregator</code> crate,
because <code>Display</code> and <code>Vec&lt;T&gt;</code> are defined in the standard library and aren’t
local to our <code>aggregator</code> crate. This restriction is part of a property of
programs called <em>coherence</em>, and more specifically the <em>orphan rule</em>, so named
because the parent type is not present. This rule ensures that other people’s
code can’t break your code and vice versa. Without the rule, two crates could
implement the same trait for the same type, and Rust wouldn’t know which
implementation to use.</p>
<a class="header" href="ch10-02-traits.html#default-implementations" id="default-implementations"><h3>Default Implementations</h3></a>
<p>Sometimes it’s useful to have default behavior for some or all of the methods
in a trait instead of requiring implementations for all methods on every type.
Then, as we implement the trait on a particular type, we can keep or override
each method’s default behavior.</p>
<p>Listing 10-14 shows how to specify a default string for the <code>summarize</code> method
of the <code>Summary</code> trait instead of only defining the method signature, as we did
in Listing 10-12.</p>
<p><span class="filename">Filename: src/lib.rs</span></p>
<pre><pre class="playpen"><code class="language-rust">
# #![allow(unused_variables)]
#fn main() {
pub trait Summary {
    fn summarize(&amp;self) -&gt; String {
        String::from(&quot;(Read more...)&quot;)
    }
}
#}</code></pre></pre>
<p><span class="caption">Listing 10-14: Definition of a <code>Summary</code> trait with a
default implementation of the <code>summarize</code> method</span></p>
<p>To use a default implementation to summarize instances of <code>NewsArticle</code> instead
of defining a custom implementation, we specify an empty <code>impl</code> block with
<code>impl Summary for NewsArticle {}</code>.</p>
<p>Even though we’re no longer defining the <code>summarize</code> method on <code>NewsArticle</code>
directly, we’ve provided a default implementation and specified that
<code>NewsArticle</code> implements the <code>Summary</code> trait. As a result, we can still call
the <code>summarize</code> method on an instance of <code>NewsArticle</code>, like this:</p>
<pre><code class="language-rust ignore">let article = NewsArticle {
    headline: String::from(&quot;Penguins win the Stanley Cup Championship!&quot;),
    location: String::from(&quot;Pittsburgh, PA, USA&quot;),
    author: String::from(&quot;Iceburgh&quot;),
    content: String::from(&quot;The Pittsburgh Penguins once again are the best
    hockey team in the NHL.&quot;),
};

println!(&quot;New article available! {}&quot;, article.summarize());
</code></pre>
<p>This code prints <code>New article available! (Read more...)</code>.</p>
<p>Creating a default implementation for <code>summarize</code> doesn’t require us to change
anything about the implementation of <code>Summary</code> on <code>Tweet</code> in Listing 10-13. The
reason is that the syntax for overriding a default implementation is the same
as the syntax for implementing a trait method that doesn’t have a default
implementation.</p>
<p>Default implementations can call other methods in the same trait, even if those
other methods don’t have a default implementation. In this way, a trait can
provide a lot of useful functionality and only require implementors to specify
a small part of it. For example, we could define the <code>Summary</code> trait to have a
<code>summarize_author</code> method whose implementation is required, and then define a
<code>summarize</code> method that has a default implementation that calls the
<code>summarize_author</code> method:</p>
<pre><pre class="playpen"><code class="language-rust">
# #![allow(unused_variables)]
#fn main() {
pub trait Summary {
    fn summarize_author(&amp;self) -&gt; String;

    fn summarize(&amp;self) -&gt; String {
        format!(&quot;(Read more from {}...)&quot;, self.summarize_author())
    }
}
#}</code></pre></pre>
<p>To use this version of <code>Summary</code>, we only need to define <code>summarize_author</code>
when we implement the trait on a type:</p>
<pre><code class="language-rust ignore">impl Summary for Tweet {
    fn summarize_author(&amp;self) -&gt; String {
        format!(&quot;@{}&quot;, self.username)
    }
}
</code></pre>
<p>After we define <code>summarize_author</code>, we can call <code>summarize</code> on instances of the
<code>Tweet</code> struct, and the default implementation of <code>summarize</code> will call the
definition of <code>summarize_author</code> that we’ve provided. Because we’ve implemented
<code>summarize_author</code>, the <code>Summary</code> trait has given us the behavior of the
<code>summarize</code> method without requiring us to write any more code.</p>
<pre><code class="language-rust ignore">let tweet = Tweet {
    username: String::from(&quot;horse_ebooks&quot;),
    content: String::from(&quot;of course, as you probably already know, people&quot;),
    reply: false,
    retweet: false,
};

println!(&quot;1 new tweet: {}&quot;, tweet.summarize());
</code></pre>
<p>This code prints <code>1 new tweet: (Read more from @horse_ebooks...)</code>.</p>
<p>Note that it isn’t possible to call the default implementation from an
overriding implementation of that same method.</p>
<a class="header" href="ch10-02-traits.html#trait-bounds" id="trait-bounds"><h3>Trait Bounds</h3></a>
<p>Now that you know how to define traits and implement those traits on types, we
can explore how to use traits with generic type parameters. We can use <em>trait
bounds</em> to constrain generic types to ensure the type will be limited to those
that implement a particular trait and behavior.</p>
<p>For example, in Listing 10-13, we implemented the <code>Summary</code> trait on the types
<code>NewsArticle</code> and <code>Tweet</code>. We can define a function <code>notify</code> that calls the
<code>summarize</code> method on its parameter <code>item</code>, which is of the generic type <code>T</code>.
To be able to call <code>summarize</code> on <code>item</code> without getting an error telling us
that the generic type <code>T</code> doesn’t implement the method <code>summarize</code>, we can use
trait bounds on <code>T</code> to specify that <code>item</code> must be of a type that implements
the <code>Summary</code> trait:</p>
<pre><code class="language-rust ignore">pub fn notify&lt;T: Summary&gt;(item: T) {
    println!(&quot;Breaking news! {}&quot;, item.summarize());
}
</code></pre>
<p>We place trait bounds with the declaration of the generic type parameter, after
a colon and inside angle brackets. Because of the trait bound on <code>T</code>, we can
call <code>notify</code> and pass in any instance of <code>NewsArticle</code> or <code>Tweet</code>. Code that
calls the function with any other type, like a <code>String</code> or an <code>i32</code>, won’t
compile, because those types don’t implement <code>Summary</code>.</p>
<p>We can specify multiple trait bounds on a generic type using the <code>+</code> syntax.
For example, to use display formatting on the type <code>T</code> in a function as well as
the <code>summarize</code> method, we can use <code>T: Summary + Display</code> to say <code>T</code> can be any
type that implements <code>Summary</code> and <code>Display</code>.</p>
<p>However, there are downsides to using too many trait bounds. Each generic has
its own trait bounds, so functions with multiple generic type parameters can
have lots of trait bound information between a function’s name and its
parameter list, making the function signature hard to read. For this reason,
Rust has alternate syntax for specifying trait bounds inside a <code>where</code> clause
after the function signature. So instead of writing this:</p>
<pre><code class="language-rust ignore">fn some_function&lt;T: Display + Clone, U: Clone + Debug&gt;(t: T, u: U) -&gt; i32 {
</code></pre>
<p>we can use a <code>where</code> clause, like this:</p>
<pre><code class="language-rust ignore">fn some_function&lt;T, U&gt;(t: T, u: U) -&gt; i32
    where T: Display + Clone,
          U: Clone + Debug
{
</code></pre>
<p>This function’s signature is less cluttered in that the function name,
parameter list, and return type are close together, similar to a function
without lots of trait bounds.</p>
<a class="header" href="ch10-02-traits.html#fixing-the-largest-function-with-trait-bounds" id="fixing-the-largest-function-with-trait-bounds"><h3>Fixing the <code>largest</code> Function with Trait Bounds</h3></a>
<p>Now that you know how to specify the behavior you want to use using the generic
type parameter’s bounds, let’s return to Listing 10-5 to fix the definition of
the <code>largest</code> function that uses a generic type parameter! Last time we tried
to run that code, we received this error:</p>
<pre><code class="language-text">error[E0369]: binary operation `&gt;` cannot be applied to type `T`
 --&gt; src/main.rs:5:12
  |
5 |         if item &gt; largest {
  |            ^^^^^^^^^^^^^^
  |
  = note: an implementation of `std::cmp::PartialOrd` might be missing for `T`
</code></pre>
<p>In the body of <code>largest</code> we wanted to compare two values of type <code>T</code> using the
greater than (<code>&gt;</code>) operator. Because that operator is defined as a default
method on the standard library trait <code>std::cmp::PartialOrd</code>, we need to specify
<code>PartialOrd</code> in the trait bounds for <code>T</code> so the <code>largest</code> function can work on
slices of any type that we can compare. We don’t need to bring <code>PartialOrd</code>
into scope because it’s in the prelude. Change the signature of <code>largest</code> to
look like this:</p>
<pre><code class="language-rust ignore">fn largest&lt;T: PartialOrd&gt;(list: &amp;[T]) -&gt; T {
</code></pre>
<p>This time when we compile the code, we get a different set of errors:</p>
<pre><code class="language-text">error[E0508]: cannot move out of type `[T]`, a non-copy slice
 --&gt; src/main.rs:2:23
  |
2 |     let mut largest = list[0];
  |                       ^^^^^^^
  |                       |
  |                       cannot move out of here
  |                       help: consider using a reference instead: `&amp;list[0]`

error[E0507]: cannot move out of borrowed content
 --&gt; src/main.rs:4:9
  |
4 |     for &amp;item in list.iter() {
  |         ^----
  |         ||
  |         |hint: to prevent move, use `ref item` or `ref mut item`
  |         cannot move out of borrowed content
</code></pre>
<p>The key line in this error is <code>cannot move out of type [T], a non-copy slice</code>.
With our non-generic versions of the <code>largest</code> function, we were only trying to
find the largest <code>i32</code> or <code>char</code>. As discussed in the “Stack-Only Data: Copy”
section in Chapter 4, types like <code>i32</code> and <code>char</code> that have a known size can be
stored on the stack, so they implement the <code>Copy</code> trait. But when we made the
<code>largest</code> function generic, it became possible for the <code>list</code> parameter to have
types in it that don’t implement the <code>Copy</code> trait. Consequently, we wouldn’t be
able to move the value out of <code>list[0]</code> and into the <code>largest</code> variable,
resulting in this error.</p>
<p>To call this code with only those types that implement the <code>Copy</code> trait, we can
add <code>Copy</code> to the trait bounds of <code>T</code>! Listing 10-15 shows the complete code of
a generic <code>largest</code> function that will compile as long as the types of the
values in the slice that we pass into the function implement the <code>PartialOrd</code>
<em>and</em> <code>Copy</code> traits, like <code>i32</code> and <code>char</code> do.</p>
<p><span class="filename">Filename: src/main.rs</span></p>
<pre><pre class="playpen"><code class="language-rust">fn largest&lt;T: PartialOrd + Copy&gt;(list: &amp;[T]) -&gt; T {
    let mut largest = list[0];

    for &amp;item in list.iter() {
        if item &gt; largest {
            largest = item;
        }
    }

    largest
}

fn main() {
    let number_list = vec![34, 50, 25, 100, 65];

    let result = largest(&amp;number_list);
    println!(&quot;The largest number is {}&quot;, result);

    let char_list = vec!['y', 'm', 'a', 'q'];

    let result = largest(&amp;char_list);
    println!(&quot;The largest char is {}&quot;, result);
}
</code></pre></pre>
<p><span class="caption">Listing 10-15: A working definition of the <code>largest</code>
function that works on any generic type that implements the <code>PartialOrd</code> and
<code>Copy</code> traits</span></p>
<p>If we don’t want to restrict the <code>largest</code> function to the types that implement
the <code>Copy</code> trait, we could specify that <code>T</code> has the trait bound <code>Clone</code> instead
of <code>Copy</code>. Then we could clone each value in the slice when we want the
<code>largest</code> function to have ownership. Using the <code>clone</code> function means we’re
potentially making more heap allocations in the case of types that own heap
data like <code>String</code>, and heap allocations can be slow if we’re working with
large amounts of data.</p>
<p>Another way we could implement <code>largest</code> is for the function to return a
reference to a <code>T</code> value in the slice. If we change the return type to <code>&amp;T</code>
instead of <code>T</code>, thereby changing the body of the function to return a
reference, we wouldn’t need the <code>Clone</code> or <code>Copy</code> trait bounds and we could
avoid heap allocations. Try implementing these alternate solutions on your own!</p>
<a class="header" href="ch10-02-traits.html#using-trait-bounds-to-conditionally-implement-methods" id="using-trait-bounds-to-conditionally-implement-methods"><h3>Using Trait Bounds to Conditionally Implement Methods</h3></a>
<p>By using a trait bound with an <code>impl</code> block that uses generic type parameters,
we can implement methods conditionally for types that implement the specified
traits. For example, the type <code>Pair&lt;T&gt;</code> in Listing 10-16 always implements the
<code>new</code> function. But <code>Pair&lt;T&gt;</code> only implements the <code>cmp_display</code> method if its
inner type <code>T</code> implements the <code>PartialOrd</code> trait that enables comparison <em>and</em>
the <code>Display</code> trait that enables printing.</p>
<pre><pre class="playpen"><code class="language-rust">
# #![allow(unused_variables)]
#fn main() {
use std::fmt::Display;

struct Pair&lt;T&gt; {
    x: T,
    y: T,
}

impl&lt;T&gt; Pair&lt;T&gt; {
    fn new(x: T, y: T) -&gt; Self {
        Self {
            x,
            y,
        }
    }
}

impl&lt;T: Display + PartialOrd&gt; Pair&lt;T&gt; {
    fn cmp_display(&amp;self) {
        if self.x &gt;= self.y {
            println!(&quot;The largest member is x = {}&quot;, self.x);
        } else {
            println!(&quot;The largest member is y = {}&quot;, self.y);
        }
    }
}
#}</code></pre></pre>
<p><span class="caption">Listing 10-16: Conditionally implement methods on a
generic type depending on trait bounds</span></p>
<p>We can also conditionally implement a trait for any type that implements
another trait. Implementations of a trait on any type that satisfies the trait
bounds are called <em>blanket implementations</em> and are extensively used in the
Rust standard library. For example, the standard library implements the
<code>ToString</code> trait on any type that implements the <code>Display</code> trait. The <code>impl</code>
block in the standard library looks similar to this code:</p>
<pre><code class="language-rust ignore">impl&lt;T: Display&gt; ToString for T {
    // --snip--
}
</code></pre>
<p>Because the standard library has this blanket implementation, we can call the
<code>to_string</code> method defined by the <code>ToString</code> trait on any type that implements
the <code>Display</code> trait. For example, we can turn integers into their corresponding
<code>String</code> values like this because integers implement <code>Display</code>:</p>
<pre><pre class="playpen"><code class="language-rust">
# #![allow(unused_variables)]
#fn main() {
let s = 3.to_string();
#}</code></pre></pre>
<p>Blanket implementations appear in the documentation for the trait in the
“Implementors” section.</p>
<p>Traits and trait bounds let us write code that uses generic type parameters to
reduce duplication but also specify to the compiler that we want the generic
type to have particular behavior. The compiler can then use the trait bound
information to check that all the concrete types used with our code provide the
correct behavior. In dynamically typed languages, we would get an error at
runtime if we called a method on a type that the type didn’t implement. But
Rust moves these errors to compile time so we’re forced to fix the problems
before our code is even able to run. Additionally, we don’t have to write code
that checks for behavior at runtime because we’ve already checked at compile
time. Doing so improves performance without having to give up the flexibility
of generics.</p>
<p>Another kind of generic that we’ve already been using is called <em>lifetimes</em>.
Rather than ensuring that a type has the behavior we want, lifetimes ensure
that references are valid as long as we need them to be. Let’s look at how
lifetimes do that.</p>

                    </main>

                    <nav class="nav-wrapper" aria-label="Page navigation">
                        <!-- Mobile navigation buttons -->
                        
                            <a rel="prev" href="ch10-01-syntax.html" class="mobile-nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left">
                                <i class="fa fa-angle-left"></i>
                            </a>
                        

                        
                            <a rel="next" href="ch10-03-lifetime-syntax.html" class="mobile-nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right">
                                <i class="fa fa-angle-right"></i>
                            </a>
                        

                        <div style="clear: both"></div>
                    </nav>
                </div>
            </div>

            <nav class="nav-wide-wrapper" aria-label="Page navigation">
                
                    <a href="ch10-01-syntax.html" class="nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left">
                        <i class="fa fa-angle-left"></i>
                    </a>
                

                
                    <a href="ch10-03-lifetime-syntax.html" class="nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right">
                        <i class="fa fa-angle-right"></i>
                    </a>
                
            </nav>

        </div>

        

        

        

        

        
        <script src="searchindex.js" type="text/javascript" charset="utf-8"></script>
        
        
        <script src="elasticlunr.min.js" type="text/javascript" charset="utf-8"></script>
        <script src="mark.min.js" type="text/javascript" charset="utf-8"></script>
        <script src="searcher.js" type="text/javascript" charset="utf-8"></script>
        

        <script src="clipboard.min.js" type="text/javascript" charset="utf-8"></script>
        <script src="highlight.js" type="text/javascript" charset="utf-8"></script>
        <script src="book.js" type="text/javascript" charset="utf-8"></script>

        <!-- Custom JS scripts -->
        

    </body>
</html>