Sophie

Sophie

distrib > Mageia > 6 > armv7hl > media > core-updates > by-pkgid > 564935689ab5527f955e5449ded02799 > files > 2662

rust-doc-1.19.0-1.mga6.armv7hl.rpm

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <meta name="generator" content="rustdoc">
    <meta name="description" content="Source to the Rust file `src/libcore/num/flt2dec/strategy/grisu.rs`.">
    <meta name="keywords" content="rust, rustlang, rust-lang">

    <title>grisu.rs.html -- source</title>

    <link rel="stylesheet" type="text/css" href="../../../../../normalize.css">
    <link rel="stylesheet" type="text/css" href="../../../../../rustdoc.css">
    <link rel="stylesheet" type="text/css" href="../../../../../main.css">
    

    <link rel="shortcut icon" href="https://doc.rust-lang.org/favicon.ico">
    
</head>
<body class="rustdoc source">
    <!--[if lte IE 8]>
    <div class="warning">
        This old browser is unsupported and will most likely display funky
        things.
    </div>
    <![endif]-->

    

    <nav class="sidebar">
        <a href='../../../../../core/index.html'><img src='https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png' alt='logo' width='100'></a>
        
    </nav>

    <nav class="sub">
        <form class="search-form js-only">
            <div class="search-container">
                <input class="search-input" name="search"
                       autocomplete="off"
                       placeholder="Click or press ‘S’ to search, ‘?’ for more options…"
                       type="search">
            </div>
        </form>
    </nav>

    <section id='main' class="content"><pre class="line-numbers"><span id="1">  1</span>
<span id="2">  2</span>
<span id="3">  3</span>
<span id="4">  4</span>
<span id="5">  5</span>
<span id="6">  6</span>
<span id="7">  7</span>
<span id="8">  8</span>
<span id="9">  9</span>
<span id="10"> 10</span>
<span id="11"> 11</span>
<span id="12"> 12</span>
<span id="13"> 13</span>
<span id="14"> 14</span>
<span id="15"> 15</span>
<span id="16"> 16</span>
<span id="17"> 17</span>
<span id="18"> 18</span>
<span id="19"> 19</span>
<span id="20"> 20</span>
<span id="21"> 21</span>
<span id="22"> 22</span>
<span id="23"> 23</span>
<span id="24"> 24</span>
<span id="25"> 25</span>
<span id="26"> 26</span>
<span id="27"> 27</span>
<span id="28"> 28</span>
<span id="29"> 29</span>
<span id="30"> 30</span>
<span id="31"> 31</span>
<span id="32"> 32</span>
<span id="33"> 33</span>
<span id="34"> 34</span>
<span id="35"> 35</span>
<span id="36"> 36</span>
<span id="37"> 37</span>
<span id="38"> 38</span>
<span id="39"> 39</span>
<span id="40"> 40</span>
<span id="41"> 41</span>
<span id="42"> 42</span>
<span id="43"> 43</span>
<span id="44"> 44</span>
<span id="45"> 45</span>
<span id="46"> 46</span>
<span id="47"> 47</span>
<span id="48"> 48</span>
<span id="49"> 49</span>
<span id="50"> 50</span>
<span id="51"> 51</span>
<span id="52"> 52</span>
<span id="53"> 53</span>
<span id="54"> 54</span>
<span id="55"> 55</span>
<span id="56"> 56</span>
<span id="57"> 57</span>
<span id="58"> 58</span>
<span id="59"> 59</span>
<span id="60"> 60</span>
<span id="61"> 61</span>
<span id="62"> 62</span>
<span id="63"> 63</span>
<span id="64"> 64</span>
<span id="65"> 65</span>
<span id="66"> 66</span>
<span id="67"> 67</span>
<span id="68"> 68</span>
<span id="69"> 69</span>
<span id="70"> 70</span>
<span id="71"> 71</span>
<span id="72"> 72</span>
<span id="73"> 73</span>
<span id="74"> 74</span>
<span id="75"> 75</span>
<span id="76"> 76</span>
<span id="77"> 77</span>
<span id="78"> 78</span>
<span id="79"> 79</span>
<span id="80"> 80</span>
<span id="81"> 81</span>
<span id="82"> 82</span>
<span id="83"> 83</span>
<span id="84"> 84</span>
<span id="85"> 85</span>
<span id="86"> 86</span>
<span id="87"> 87</span>
<span id="88"> 88</span>
<span id="89"> 89</span>
<span id="90"> 90</span>
<span id="91"> 91</span>
<span id="92"> 92</span>
<span id="93"> 93</span>
<span id="94"> 94</span>
<span id="95"> 95</span>
<span id="96"> 96</span>
<span id="97"> 97</span>
<span id="98"> 98</span>
<span id="99"> 99</span>
<span id="100">100</span>
<span id="101">101</span>
<span id="102">102</span>
<span id="103">103</span>
<span id="104">104</span>
<span id="105">105</span>
<span id="106">106</span>
<span id="107">107</span>
<span id="108">108</span>
<span id="109">109</span>
<span id="110">110</span>
<span id="111">111</span>
<span id="112">112</span>
<span id="113">113</span>
<span id="114">114</span>
<span id="115">115</span>
<span id="116">116</span>
<span id="117">117</span>
<span id="118">118</span>
<span id="119">119</span>
<span id="120">120</span>
<span id="121">121</span>
<span id="122">122</span>
<span id="123">123</span>
<span id="124">124</span>
<span id="125">125</span>
<span id="126">126</span>
<span id="127">127</span>
<span id="128">128</span>
<span id="129">129</span>
<span id="130">130</span>
<span id="131">131</span>
<span id="132">132</span>
<span id="133">133</span>
<span id="134">134</span>
<span id="135">135</span>
<span id="136">136</span>
<span id="137">137</span>
<span id="138">138</span>
<span id="139">139</span>
<span id="140">140</span>
<span id="141">141</span>
<span id="142">142</span>
<span id="143">143</span>
<span id="144">144</span>
<span id="145">145</span>
<span id="146">146</span>
<span id="147">147</span>
<span id="148">148</span>
<span id="149">149</span>
<span id="150">150</span>
<span id="151">151</span>
<span id="152">152</span>
<span id="153">153</span>
<span id="154">154</span>
<span id="155">155</span>
<span id="156">156</span>
<span id="157">157</span>
<span id="158">158</span>
<span id="159">159</span>
<span id="160">160</span>
<span id="161">161</span>
<span id="162">162</span>
<span id="163">163</span>
<span id="164">164</span>
<span id="165">165</span>
<span id="166">166</span>
<span id="167">167</span>
<span id="168">168</span>
<span id="169">169</span>
<span id="170">170</span>
<span id="171">171</span>
<span id="172">172</span>
<span id="173">173</span>
<span id="174">174</span>
<span id="175">175</span>
<span id="176">176</span>
<span id="177">177</span>
<span id="178">178</span>
<span id="179">179</span>
<span id="180">180</span>
<span id="181">181</span>
<span id="182">182</span>
<span id="183">183</span>
<span id="184">184</span>
<span id="185">185</span>
<span id="186">186</span>
<span id="187">187</span>
<span id="188">188</span>
<span id="189">189</span>
<span id="190">190</span>
<span id="191">191</span>
<span id="192">192</span>
<span id="193">193</span>
<span id="194">194</span>
<span id="195">195</span>
<span id="196">196</span>
<span id="197">197</span>
<span id="198">198</span>
<span id="199">199</span>
<span id="200">200</span>
<span id="201">201</span>
<span id="202">202</span>
<span id="203">203</span>
<span id="204">204</span>
<span id="205">205</span>
<span id="206">206</span>
<span id="207">207</span>
<span id="208">208</span>
<span id="209">209</span>
<span id="210">210</span>
<span id="211">211</span>
<span id="212">212</span>
<span id="213">213</span>
<span id="214">214</span>
<span id="215">215</span>
<span id="216">216</span>
<span id="217">217</span>
<span id="218">218</span>
<span id="219">219</span>
<span id="220">220</span>
<span id="221">221</span>
<span id="222">222</span>
<span id="223">223</span>
<span id="224">224</span>
<span id="225">225</span>
<span id="226">226</span>
<span id="227">227</span>
<span id="228">228</span>
<span id="229">229</span>
<span id="230">230</span>
<span id="231">231</span>
<span id="232">232</span>
<span id="233">233</span>
<span id="234">234</span>
<span id="235">235</span>
<span id="236">236</span>
<span id="237">237</span>
<span id="238">238</span>
<span id="239">239</span>
<span id="240">240</span>
<span id="241">241</span>
<span id="242">242</span>
<span id="243">243</span>
<span id="244">244</span>
<span id="245">245</span>
<span id="246">246</span>
<span id="247">247</span>
<span id="248">248</span>
<span id="249">249</span>
<span id="250">250</span>
<span id="251">251</span>
<span id="252">252</span>
<span id="253">253</span>
<span id="254">254</span>
<span id="255">255</span>
<span id="256">256</span>
<span id="257">257</span>
<span id="258">258</span>
<span id="259">259</span>
<span id="260">260</span>
<span id="261">261</span>
<span id="262">262</span>
<span id="263">263</span>
<span id="264">264</span>
<span id="265">265</span>
<span id="266">266</span>
<span id="267">267</span>
<span id="268">268</span>
<span id="269">269</span>
<span id="270">270</span>
<span id="271">271</span>
<span id="272">272</span>
<span id="273">273</span>
<span id="274">274</span>
<span id="275">275</span>
<span id="276">276</span>
<span id="277">277</span>
<span id="278">278</span>
<span id="279">279</span>
<span id="280">280</span>
<span id="281">281</span>
<span id="282">282</span>
<span id="283">283</span>
<span id="284">284</span>
<span id="285">285</span>
<span id="286">286</span>
<span id="287">287</span>
<span id="288">288</span>
<span id="289">289</span>
<span id="290">290</span>
<span id="291">291</span>
<span id="292">292</span>
<span id="293">293</span>
<span id="294">294</span>
<span id="295">295</span>
<span id="296">296</span>
<span id="297">297</span>
<span id="298">298</span>
<span id="299">299</span>
<span id="300">300</span>
<span id="301">301</span>
<span id="302">302</span>
<span id="303">303</span>
<span id="304">304</span>
<span id="305">305</span>
<span id="306">306</span>
<span id="307">307</span>
<span id="308">308</span>
<span id="309">309</span>
<span id="310">310</span>
<span id="311">311</span>
<span id="312">312</span>
<span id="313">313</span>
<span id="314">314</span>
<span id="315">315</span>
<span id="316">316</span>
<span id="317">317</span>
<span id="318">318</span>
<span id="319">319</span>
<span id="320">320</span>
<span id="321">321</span>
<span id="322">322</span>
<span id="323">323</span>
<span id="324">324</span>
<span id="325">325</span>
<span id="326">326</span>
<span id="327">327</span>
<span id="328">328</span>
<span id="329">329</span>
<span id="330">330</span>
<span id="331">331</span>
<span id="332">332</span>
<span id="333">333</span>
<span id="334">334</span>
<span id="335">335</span>
<span id="336">336</span>
<span id="337">337</span>
<span id="338">338</span>
<span id="339">339</span>
<span id="340">340</span>
<span id="341">341</span>
<span id="342">342</span>
<span id="343">343</span>
<span id="344">344</span>
<span id="345">345</span>
<span id="346">346</span>
<span id="347">347</span>
<span id="348">348</span>
<span id="349">349</span>
<span id="350">350</span>
<span id="351">351</span>
<span id="352">352</span>
<span id="353">353</span>
<span id="354">354</span>
<span id="355">355</span>
<span id="356">356</span>
<span id="357">357</span>
<span id="358">358</span>
<span id="359">359</span>
<span id="360">360</span>
<span id="361">361</span>
<span id="362">362</span>
<span id="363">363</span>
<span id="364">364</span>
<span id="365">365</span>
<span id="366">366</span>
<span id="367">367</span>
<span id="368">368</span>
<span id="369">369</span>
<span id="370">370</span>
<span id="371">371</span>
<span id="372">372</span>
<span id="373">373</span>
<span id="374">374</span>
<span id="375">375</span>
<span id="376">376</span>
<span id="377">377</span>
<span id="378">378</span>
<span id="379">379</span>
<span id="380">380</span>
<span id="381">381</span>
<span id="382">382</span>
<span id="383">383</span>
<span id="384">384</span>
<span id="385">385</span>
<span id="386">386</span>
<span id="387">387</span>
<span id="388">388</span>
<span id="389">389</span>
<span id="390">390</span>
<span id="391">391</span>
<span id="392">392</span>
<span id="393">393</span>
<span id="394">394</span>
<span id="395">395</span>
<span id="396">396</span>
<span id="397">397</span>
<span id="398">398</span>
<span id="399">399</span>
<span id="400">400</span>
<span id="401">401</span>
<span id="402">402</span>
<span id="403">403</span>
<span id="404">404</span>
<span id="405">405</span>
<span id="406">406</span>
<span id="407">407</span>
<span id="408">408</span>
<span id="409">409</span>
<span id="410">410</span>
<span id="411">411</span>
<span id="412">412</span>
<span id="413">413</span>
<span id="414">414</span>
<span id="415">415</span>
<span id="416">416</span>
<span id="417">417</span>
<span id="418">418</span>
<span id="419">419</span>
<span id="420">420</span>
<span id="421">421</span>
<span id="422">422</span>
<span id="423">423</span>
<span id="424">424</span>
<span id="425">425</span>
<span id="426">426</span>
<span id="427">427</span>
<span id="428">428</span>
<span id="429">429</span>
<span id="430">430</span>
<span id="431">431</span>
<span id="432">432</span>
<span id="433">433</span>
<span id="434">434</span>
<span id="435">435</span>
<span id="436">436</span>
<span id="437">437</span>
<span id="438">438</span>
<span id="439">439</span>
<span id="440">440</span>
<span id="441">441</span>
<span id="442">442</span>
<span id="443">443</span>
<span id="444">444</span>
<span id="445">445</span>
<span id="446">446</span>
<span id="447">447</span>
<span id="448">448</span>
<span id="449">449</span>
<span id="450">450</span>
<span id="451">451</span>
<span id="452">452</span>
<span id="453">453</span>
<span id="454">454</span>
<span id="455">455</span>
<span id="456">456</span>
<span id="457">457</span>
<span id="458">458</span>
<span id="459">459</span>
<span id="460">460</span>
<span id="461">461</span>
<span id="462">462</span>
<span id="463">463</span>
<span id="464">464</span>
<span id="465">465</span>
<span id="466">466</span>
<span id="467">467</span>
<span id="468">468</span>
<span id="469">469</span>
<span id="470">470</span>
<span id="471">471</span>
<span id="472">472</span>
<span id="473">473</span>
<span id="474">474</span>
<span id="475">475</span>
<span id="476">476</span>
<span id="477">477</span>
<span id="478">478</span>
<span id="479">479</span>
<span id="480">480</span>
<span id="481">481</span>
<span id="482">482</span>
<span id="483">483</span>
<span id="484">484</span>
<span id="485">485</span>
<span id="486">486</span>
<span id="487">487</span>
<span id="488">488</span>
<span id="489">489</span>
<span id="490">490</span>
<span id="491">491</span>
<span id="492">492</span>
<span id="493">493</span>
<span id="494">494</span>
<span id="495">495</span>
<span id="496">496</span>
<span id="497">497</span>
<span id="498">498</span>
<span id="499">499</span>
<span id="500">500</span>
<span id="501">501</span>
<span id="502">502</span>
<span id="503">503</span>
<span id="504">504</span>
<span id="505">505</span>
<span id="506">506</span>
<span id="507">507</span>
<span id="508">508</span>
<span id="509">509</span>
<span id="510">510</span>
<span id="511">511</span>
<span id="512">512</span>
<span id="513">513</span>
<span id="514">514</span>
<span id="515">515</span>
<span id="516">516</span>
<span id="517">517</span>
<span id="518">518</span>
<span id="519">519</span>
<span id="520">520</span>
<span id="521">521</span>
<span id="522">522</span>
<span id="523">523</span>
<span id="524">524</span>
<span id="525">525</span>
<span id="526">526</span>
<span id="527">527</span>
<span id="528">528</span>
<span id="529">529</span>
<span id="530">530</span>
<span id="531">531</span>
<span id="532">532</span>
<span id="533">533</span>
<span id="534">534</span>
<span id="535">535</span>
<span id="536">536</span>
<span id="537">537</span>
<span id="538">538</span>
<span id="539">539</span>
<span id="540">540</span>
<span id="541">541</span>
<span id="542">542</span>
<span id="543">543</span>
<span id="544">544</span>
<span id="545">545</span>
<span id="546">546</span>
<span id="547">547</span>
<span id="548">548</span>
<span id="549">549</span>
<span id="550">550</span>
<span id="551">551</span>
<span id="552">552</span>
<span id="553">553</span>
<span id="554">554</span>
<span id="555">555</span>
<span id="556">556</span>
<span id="557">557</span>
<span id="558">558</span>
<span id="559">559</span>
<span id="560">560</span>
<span id="561">561</span>
<span id="562">562</span>
<span id="563">563</span>
<span id="564">564</span>
<span id="565">565</span>
<span id="566">566</span>
<span id="567">567</span>
<span id="568">568</span>
<span id="569">569</span>
<span id="570">570</span>
<span id="571">571</span>
<span id="572">572</span>
<span id="573">573</span>
<span id="574">574</span>
<span id="575">575</span>
<span id="576">576</span>
<span id="577">577</span>
<span id="578">578</span>
<span id="579">579</span>
<span id="580">580</span>
<span id="581">581</span>
<span id="582">582</span>
<span id="583">583</span>
<span id="584">584</span>
<span id="585">585</span>
<span id="586">586</span>
<span id="587">587</span>
<span id="588">588</span>
<span id="589">589</span>
<span id="590">590</span>
<span id="591">591</span>
<span id="592">592</span>
<span id="593">593</span>
<span id="594">594</span>
<span id="595">595</span>
<span id="596">596</span>
<span id="597">597</span>
<span id="598">598</span>
<span id="599">599</span>
<span id="600">600</span>
<span id="601">601</span>
<span id="602">602</span>
<span id="603">603</span>
<span id="604">604</span>
<span id="605">605</span>
<span id="606">606</span>
<span id="607">607</span>
<span id="608">608</span>
<span id="609">609</span>
<span id="610">610</span>
<span id="611">611</span>
<span id="612">612</span>
<span id="613">613</span>
<span id="614">614</span>
<span id="615">615</span>
<span id="616">616</span>
<span id="617">617</span>
<span id="618">618</span>
<span id="619">619</span>
<span id="620">620</span>
<span id="621">621</span>
<span id="622">622</span>
<span id="623">623</span>
<span id="624">624</span>
<span id="625">625</span>
<span id="626">626</span>
<span id="627">627</span>
<span id="628">628</span>
<span id="629">629</span>
<span id="630">630</span>
<span id="631">631</span>
<span id="632">632</span>
<span id="633">633</span>
<span id="634">634</span>
<span id="635">635</span>
<span id="636">636</span>
<span id="637">637</span>
<span id="638">638</span>
<span id="639">639</span>
<span id="640">640</span>
<span id="641">641</span>
<span id="642">642</span>
<span id="643">643</span>
<span id="644">644</span>
<span id="645">645</span>
<span id="646">646</span>
<span id="647">647</span>
<span id="648">648</span>
<span id="649">649</span>
<span id="650">650</span>
<span id="651">651</span>
<span id="652">652</span>
<span id="653">653</span>
<span id="654">654</span>
<span id="655">655</span>
<span id="656">656</span>
<span id="657">657</span>
<span id="658">658</span>
<span id="659">659</span>
<span id="660">660</span>
<span id="661">661</span>
<span id="662">662</span>
<span id="663">663</span>
<span id="664">664</span>
<span id="665">665</span>
<span id="666">666</span>
<span id="667">667</span>
<span id="668">668</span>
<span id="669">669</span>
<span id="670">670</span>
<span id="671">671</span>
<span id="672">672</span>
<span id="673">673</span>
<span id="674">674</span>
<span id="675">675</span>
<span id="676">676</span>
<span id="677">677</span>
<span id="678">678</span>
<span id="679">679</span>
<span id="680">680</span>
<span id="681">681</span>
<span id="682">682</span>
<span id="683">683</span>
<span id="684">684</span>
<span id="685">685</span>
<span id="686">686</span>
<span id="687">687</span>
<span id="688">688</span>
<span id="689">689</span>
<span id="690">690</span>
<span id="691">691</span>
<span id="692">692</span>
<span id="693">693</span>
<span id="694">694</span>
</pre><pre class="rust ">
<span class="comment">// Copyright 2015 The Rust Project Developers. See the COPYRIGHT</span>
<span class="comment">// file at the top-level directory of this distribution and at</span>
<span class="comment">// http://rust-lang.org/COPYRIGHT.</span>
<span class="comment">//</span>
<span class="comment">// Licensed under the Apache License, Version 2.0 &lt;LICENSE-APACHE or</span>
<span class="comment">// http://www.apache.org/licenses/LICENSE-2.0&gt; or the MIT license</span>
<span class="comment">// &lt;LICENSE-MIT or http://opensource.org/licenses/MIT&gt;, at your</span>
<span class="comment">// option. This file may not be copied, modified, or distributed</span>
<span class="comment">// except according to those terms.</span>

<span class="doccomment">/*!
Rust adaptation of Grisu3 algorithm described in [1]. It uses about
1KB of precomputed table, and in turn, it&#39;s very quick for most inputs.

[1] Florian Loitsch. 2010. Printing floating-point numbers quickly and
    accurately with integers. SIGPLAN Not. 45, 6 (June 2010), 233-243.
*/</span>

<span class="kw">use</span> <span class="ident">num</span>::<span class="ident">diy_float</span>::<span class="ident">Fp</span>;
<span class="kw">use</span> <span class="ident">num</span>::<span class="ident">flt2dec</span>::{<span class="ident">Decoded</span>, <span class="ident">MAX_SIG_DIGITS</span>, <span class="ident">round_up</span>};


<span class="comment">// see the comments in `format_shortest_opt` for the rationale.</span>
<span class="attribute">#[<span class="ident">doc</span>(<span class="ident">hidden</span>)]</span> <span class="kw">pub</span> <span class="kw">const</span> <span class="ident">ALPHA</span>: <span class="ident">i16</span> <span class="op">=</span> <span class="op">-</span><span class="number">60</span>;
<span class="attribute">#[<span class="ident">doc</span>(<span class="ident">hidden</span>)]</span> <span class="kw">pub</span> <span class="kw">const</span> <span class="ident">GAMMA</span>: <span class="ident">i16</span> <span class="op">=</span> <span class="op">-</span><span class="number">32</span>;

<span class="comment">/*
# the following Python code generates this table:
for i in xrange(-308, 333, 8):
    if i &gt;= 0: f = 10**i; e = 0
    else: f = 2**(80-4*i) // 10**-i; e = 4 * i - 80
    l = f.bit_length()
    f = ((f &lt;&lt; 64 &gt;&gt; (l-1)) + 1) &gt;&gt; 1; e += l - 64
    print &#39;    (%#018x, %5d, %4d),&#39; % (f, e, i)
*/</span>

<span class="attribute">#[<span class="ident">doc</span>(<span class="ident">hidden</span>)]</span>
<span class="kw">pub</span> <span class="kw">static</span> <span class="ident">CACHED_POW10</span>: [(<span class="ident">u64</span>, <span class="ident">i16</span>, <span class="ident">i16</span>); <span class="number">81</span>] <span class="op">=</span> [ <span class="comment">// (f, e, k)</span>
    (<span class="number">0xe61acf033d1a45df</span>, <span class="op">-</span><span class="number">1087</span>, <span class="op">-</span><span class="number">308</span>),
    (<span class="number">0xab70fe17c79ac6ca</span>, <span class="op">-</span><span class="number">1060</span>, <span class="op">-</span><span class="number">300</span>),
    (<span class="number">0xff77b1fcbebcdc4f</span>, <span class="op">-</span><span class="number">1034</span>, <span class="op">-</span><span class="number">292</span>),
    (<span class="number">0xbe5691ef416bd60c</span>, <span class="op">-</span><span class="number">1007</span>, <span class="op">-</span><span class="number">284</span>),
    (<span class="number">0x8dd01fad907ffc3c</span>,  <span class="op">-</span><span class="number">980</span>, <span class="op">-</span><span class="number">276</span>),
    (<span class="number">0xd3515c2831559a83</span>,  <span class="op">-</span><span class="number">954</span>, <span class="op">-</span><span class="number">268</span>),
    (<span class="number">0x9d71ac8fada6c9b5</span>,  <span class="op">-</span><span class="number">927</span>, <span class="op">-</span><span class="number">260</span>),
    (<span class="number">0xea9c227723ee8bcb</span>,  <span class="op">-</span><span class="number">901</span>, <span class="op">-</span><span class="number">252</span>),
    (<span class="number">0xaecc49914078536d</span>,  <span class="op">-</span><span class="number">874</span>, <span class="op">-</span><span class="number">244</span>),
    (<span class="number">0x823c12795db6ce57</span>,  <span class="op">-</span><span class="number">847</span>, <span class="op">-</span><span class="number">236</span>),
    (<span class="number">0xc21094364dfb5637</span>,  <span class="op">-</span><span class="number">821</span>, <span class="op">-</span><span class="number">228</span>),
    (<span class="number">0x9096ea6f3848984f</span>,  <span class="op">-</span><span class="number">794</span>, <span class="op">-</span><span class="number">220</span>),
    (<span class="number">0xd77485cb25823ac7</span>,  <span class="op">-</span><span class="number">768</span>, <span class="op">-</span><span class="number">212</span>),
    (<span class="number">0xa086cfcd97bf97f4</span>,  <span class="op">-</span><span class="number">741</span>, <span class="op">-</span><span class="number">204</span>),
    (<span class="number">0xef340a98172aace5</span>,  <span class="op">-</span><span class="number">715</span>, <span class="op">-</span><span class="number">196</span>),
    (<span class="number">0xb23867fb2a35b28e</span>,  <span class="op">-</span><span class="number">688</span>, <span class="op">-</span><span class="number">188</span>),
    (<span class="number">0x84c8d4dfd2c63f3b</span>,  <span class="op">-</span><span class="number">661</span>, <span class="op">-</span><span class="number">180</span>),
    (<span class="number">0xc5dd44271ad3cdba</span>,  <span class="op">-</span><span class="number">635</span>, <span class="op">-</span><span class="number">172</span>),
    (<span class="number">0x936b9fcebb25c996</span>,  <span class="op">-</span><span class="number">608</span>, <span class="op">-</span><span class="number">164</span>),
    (<span class="number">0xdbac6c247d62a584</span>,  <span class="op">-</span><span class="number">582</span>, <span class="op">-</span><span class="number">156</span>),
    (<span class="number">0xa3ab66580d5fdaf6</span>,  <span class="op">-</span><span class="number">555</span>, <span class="op">-</span><span class="number">148</span>),
    (<span class="number">0xf3e2f893dec3f126</span>,  <span class="op">-</span><span class="number">529</span>, <span class="op">-</span><span class="number">140</span>),
    (<span class="number">0xb5b5ada8aaff80b8</span>,  <span class="op">-</span><span class="number">502</span>, <span class="op">-</span><span class="number">132</span>),
    (<span class="number">0x87625f056c7c4a8b</span>,  <span class="op">-</span><span class="number">475</span>, <span class="op">-</span><span class="number">124</span>),
    (<span class="number">0xc9bcff6034c13053</span>,  <span class="op">-</span><span class="number">449</span>, <span class="op">-</span><span class="number">116</span>),
    (<span class="number">0x964e858c91ba2655</span>,  <span class="op">-</span><span class="number">422</span>, <span class="op">-</span><span class="number">108</span>),
    (<span class="number">0xdff9772470297ebd</span>,  <span class="op">-</span><span class="number">396</span>, <span class="op">-</span><span class="number">100</span>),
    (<span class="number">0xa6dfbd9fb8e5b88f</span>,  <span class="op">-</span><span class="number">369</span>,  <span class="op">-</span><span class="number">92</span>),
    (<span class="number">0xf8a95fcf88747d94</span>,  <span class="op">-</span><span class="number">343</span>,  <span class="op">-</span><span class="number">84</span>),
    (<span class="number">0xb94470938fa89bcf</span>,  <span class="op">-</span><span class="number">316</span>,  <span class="op">-</span><span class="number">76</span>),
    (<span class="number">0x8a08f0f8bf0f156b</span>,  <span class="op">-</span><span class="number">289</span>,  <span class="op">-</span><span class="number">68</span>),
    (<span class="number">0xcdb02555653131b6</span>,  <span class="op">-</span><span class="number">263</span>,  <span class="op">-</span><span class="number">60</span>),
    (<span class="number">0x993fe2c6d07b7fac</span>,  <span class="op">-</span><span class="number">236</span>,  <span class="op">-</span><span class="number">52</span>),
    (<span class="number">0xe45c10c42a2b3b06</span>,  <span class="op">-</span><span class="number">210</span>,  <span class="op">-</span><span class="number">44</span>),
    (<span class="number">0xaa242499697392d3</span>,  <span class="op">-</span><span class="number">183</span>,  <span class="op">-</span><span class="number">36</span>),
    (<span class="number">0xfd87b5f28300ca0e</span>,  <span class="op">-</span><span class="number">157</span>,  <span class="op">-</span><span class="number">28</span>),
    (<span class="number">0xbce5086492111aeb</span>,  <span class="op">-</span><span class="number">130</span>,  <span class="op">-</span><span class="number">20</span>),
    (<span class="number">0x8cbccc096f5088cc</span>,  <span class="op">-</span><span class="number">103</span>,  <span class="op">-</span><span class="number">12</span>),
    (<span class="number">0xd1b71758e219652c</span>,   <span class="op">-</span><span class="number">77</span>,   <span class="op">-</span><span class="number">4</span>),
    (<span class="number">0x9c40000000000000</span>,   <span class="op">-</span><span class="number">50</span>,    <span class="number">4</span>),
    (<span class="number">0xe8d4a51000000000</span>,   <span class="op">-</span><span class="number">24</span>,   <span class="number">12</span>),
    (<span class="number">0xad78ebc5ac620000</span>,     <span class="number">3</span>,   <span class="number">20</span>),
    (<span class="number">0x813f3978f8940984</span>,    <span class="number">30</span>,   <span class="number">28</span>),
    (<span class="number">0xc097ce7bc90715b3</span>,    <span class="number">56</span>,   <span class="number">36</span>),
    (<span class="number">0x8f7e32ce7bea5c70</span>,    <span class="number">83</span>,   <span class="number">44</span>),
    (<span class="number">0xd5d238a4abe98068</span>,   <span class="number">109</span>,   <span class="number">52</span>),
    (<span class="number">0x9f4f2726179a2245</span>,   <span class="number">136</span>,   <span class="number">60</span>),
    (<span class="number">0xed63a231d4c4fb27</span>,   <span class="number">162</span>,   <span class="number">68</span>),
    (<span class="number">0xb0de65388cc8ada8</span>,   <span class="number">189</span>,   <span class="number">76</span>),
    (<span class="number">0x83c7088e1aab65db</span>,   <span class="number">216</span>,   <span class="number">84</span>),
    (<span class="number">0xc45d1df942711d9a</span>,   <span class="number">242</span>,   <span class="number">92</span>),
    (<span class="number">0x924d692ca61be758</span>,   <span class="number">269</span>,  <span class="number">100</span>),
    (<span class="number">0xda01ee641a708dea</span>,   <span class="number">295</span>,  <span class="number">108</span>),
    (<span class="number">0xa26da3999aef774a</span>,   <span class="number">322</span>,  <span class="number">116</span>),
    (<span class="number">0xf209787bb47d6b85</span>,   <span class="number">348</span>,  <span class="number">124</span>),
    (<span class="number">0xb454e4a179dd1877</span>,   <span class="number">375</span>,  <span class="number">132</span>),
    (<span class="number">0x865b86925b9bc5c2</span>,   <span class="number">402</span>,  <span class="number">140</span>),
    (<span class="number">0xc83553c5c8965d3d</span>,   <span class="number">428</span>,  <span class="number">148</span>),
    (<span class="number">0x952ab45cfa97a0b3</span>,   <span class="number">455</span>,  <span class="number">156</span>),
    (<span class="number">0xde469fbd99a05fe3</span>,   <span class="number">481</span>,  <span class="number">164</span>),
    (<span class="number">0xa59bc234db398c25</span>,   <span class="number">508</span>,  <span class="number">172</span>),
    (<span class="number">0xf6c69a72a3989f5c</span>,   <span class="number">534</span>,  <span class="number">180</span>),
    (<span class="number">0xb7dcbf5354e9bece</span>,   <span class="number">561</span>,  <span class="number">188</span>),
    (<span class="number">0x88fcf317f22241e2</span>,   <span class="number">588</span>,  <span class="number">196</span>),
    (<span class="number">0xcc20ce9bd35c78a5</span>,   <span class="number">614</span>,  <span class="number">204</span>),
    (<span class="number">0x98165af37b2153df</span>,   <span class="number">641</span>,  <span class="number">212</span>),
    (<span class="number">0xe2a0b5dc971f303a</span>,   <span class="number">667</span>,  <span class="number">220</span>),
    (<span class="number">0xa8d9d1535ce3b396</span>,   <span class="number">694</span>,  <span class="number">228</span>),
    (<span class="number">0xfb9b7cd9a4a7443c</span>,   <span class="number">720</span>,  <span class="number">236</span>),
    (<span class="number">0xbb764c4ca7a44410</span>,   <span class="number">747</span>,  <span class="number">244</span>),
    (<span class="number">0x8bab8eefb6409c1a</span>,   <span class="number">774</span>,  <span class="number">252</span>),
    (<span class="number">0xd01fef10a657842c</span>,   <span class="number">800</span>,  <span class="number">260</span>),
    (<span class="number">0x9b10a4e5e9913129</span>,   <span class="number">827</span>,  <span class="number">268</span>),
    (<span class="number">0xe7109bfba19c0c9d</span>,   <span class="number">853</span>,  <span class="number">276</span>),
    (<span class="number">0xac2820d9623bf429</span>,   <span class="number">880</span>,  <span class="number">284</span>),
    (<span class="number">0x80444b5e7aa7cf85</span>,   <span class="number">907</span>,  <span class="number">292</span>),
    (<span class="number">0xbf21e44003acdd2d</span>,   <span class="number">933</span>,  <span class="number">300</span>),
    (<span class="number">0x8e679c2f5e44ff8f</span>,   <span class="number">960</span>,  <span class="number">308</span>),
    (<span class="number">0xd433179d9c8cb841</span>,   <span class="number">986</span>,  <span class="number">316</span>),
    (<span class="number">0x9e19db92b4e31ba9</span>,  <span class="number">1013</span>,  <span class="number">324</span>),
    (<span class="number">0xeb96bf6ebadf77d9</span>,  <span class="number">1039</span>,  <span class="number">332</span>),
];

<span class="attribute">#[<span class="ident">doc</span>(<span class="ident">hidden</span>)]</span> <span class="kw">pub</span> <span class="kw">const</span> <span class="ident">CACHED_POW10_FIRST_E</span>: <span class="ident">i16</span> <span class="op">=</span> <span class="op">-</span><span class="number">1087</span>;
<span class="attribute">#[<span class="ident">doc</span>(<span class="ident">hidden</span>)]</span> <span class="kw">pub</span> <span class="kw">const</span> <span class="ident">CACHED_POW10_LAST_E</span>: <span class="ident">i16</span> <span class="op">=</span> <span class="number">1039</span>;

<span class="attribute">#[<span class="ident">doc</span>(<span class="ident">hidden</span>)]</span>
<span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">cached_power</span>(<span class="ident">alpha</span>: <span class="ident">i16</span>, <span class="ident">gamma</span>: <span class="ident">i16</span>) <span class="op">-&gt;</span> (<span class="ident">i16</span>, <span class="ident">Fp</span>) {
    <span class="kw">let</span> <span class="ident">offset</span> <span class="op">=</span> <span class="ident">CACHED_POW10_FIRST_E</span> <span class="kw">as</span> <span class="ident">i32</span>;
    <span class="kw">let</span> <span class="ident">range</span> <span class="op">=</span> (<span class="ident">CACHED_POW10</span>.<span class="ident">len</span>() <span class="kw">as</span> <span class="ident">i32</span>) <span class="op">-</span> <span class="number">1</span>;
    <span class="kw">let</span> <span class="ident">domain</span> <span class="op">=</span> (<span class="ident">CACHED_POW10_LAST_E</span> <span class="op">-</span> <span class="ident">CACHED_POW10_FIRST_E</span>) <span class="kw">as</span> <span class="ident">i32</span>;
    <span class="kw">let</span> <span class="ident">idx</span> <span class="op">=</span> ((<span class="ident">gamma</span> <span class="kw">as</span> <span class="ident">i32</span>) <span class="op">-</span> <span class="ident">offset</span>) <span class="op">*</span> <span class="ident">range</span> <span class="op">/</span> <span class="ident">domain</span>;
    <span class="kw">let</span> (<span class="ident">f</span>, <span class="ident">e</span>, <span class="ident">k</span>) <span class="op">=</span> <span class="ident">CACHED_POW10</span>[<span class="ident">idx</span> <span class="kw">as</span> <span class="ident">usize</span>];
    <span class="macro">debug_assert</span><span class="macro">!</span>(<span class="ident">alpha</span> <span class="op">&lt;=</span> <span class="ident">e</span> <span class="op">&amp;&amp;</span> <span class="ident">e</span> <span class="op">&lt;=</span> <span class="ident">gamma</span>);
    (<span class="ident">k</span>, <span class="ident">Fp</span> { <span class="ident">f</span>: <span class="ident">f</span>, <span class="ident">e</span>: <span class="ident">e</span> })
}

<span class="doccomment">/// Given `x &gt; 0`, returns `(k, 10^k)` such that `10^k &lt;= x &lt; 10^(k+1)`.</span>
<span class="attribute">#[<span class="ident">doc</span>(<span class="ident">hidden</span>)]</span>
<span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">max_pow10_no_more_than</span>(<span class="ident">x</span>: <span class="ident">u32</span>) <span class="op">-&gt;</span> (<span class="ident">u8</span>, <span class="ident">u32</span>) {
    <span class="macro">debug_assert</span><span class="macro">!</span>(<span class="ident">x</span> <span class="op">&gt;</span> <span class="number">0</span>);

    <span class="kw">const</span> <span class="ident">X9</span>: <span class="ident">u32</span> <span class="op">=</span> <span class="number">10_0000_0000</span>;
    <span class="kw">const</span> <span class="ident">X8</span>: <span class="ident">u32</span> <span class="op">=</span>  <span class="number">1_0000_0000</span>;
    <span class="kw">const</span> <span class="ident">X7</span>: <span class="ident">u32</span> <span class="op">=</span>    <span class="number">1000_0000</span>;
    <span class="kw">const</span> <span class="ident">X6</span>: <span class="ident">u32</span> <span class="op">=</span>     <span class="number">100_0000</span>;
    <span class="kw">const</span> <span class="ident">X5</span>: <span class="ident">u32</span> <span class="op">=</span>      <span class="number">10_0000</span>;
    <span class="kw">const</span> <span class="ident">X4</span>: <span class="ident">u32</span> <span class="op">=</span>       <span class="number">1_0000</span>;
    <span class="kw">const</span> <span class="ident">X3</span>: <span class="ident">u32</span> <span class="op">=</span>         <span class="number">1000</span>;
    <span class="kw">const</span> <span class="ident">X2</span>: <span class="ident">u32</span> <span class="op">=</span>          <span class="number">100</span>;
    <span class="kw">const</span> <span class="ident">X1</span>: <span class="ident">u32</span> <span class="op">=</span>           <span class="number">10</span>;

    <span class="kw">if</span> <span class="ident">x</span> <span class="op">&lt;</span> <span class="ident">X4</span> {
        <span class="kw">if</span> <span class="ident">x</span> <span class="op">&lt;</span> <span class="ident">X2</span> { <span class="kw">if</span> <span class="ident">x</span> <span class="op">&lt;</span> <span class="ident">X1</span> {(<span class="number">0</span>,  <span class="number">1</span>)} <span class="kw">else</span> {(<span class="number">1</span>, <span class="ident">X1</span>)} }
        <span class="kw">else</span>      { <span class="kw">if</span> <span class="ident">x</span> <span class="op">&lt;</span> <span class="ident">X3</span> {(<span class="number">2</span>, <span class="ident">X2</span>)} <span class="kw">else</span> {(<span class="number">3</span>, <span class="ident">X3</span>)} }
    } <span class="kw">else</span> {
        <span class="kw">if</span> <span class="ident">x</span> <span class="op">&lt;</span> <span class="ident">X6</span>      { <span class="kw">if</span> <span class="ident">x</span> <span class="op">&lt;</span> <span class="ident">X5</span> {(<span class="number">4</span>, <span class="ident">X4</span>)} <span class="kw">else</span> {(<span class="number">5</span>, <span class="ident">X5</span>)} }
        <span class="kw">else</span> <span class="kw">if</span> <span class="ident">x</span> <span class="op">&lt;</span> <span class="ident">X8</span> { <span class="kw">if</span> <span class="ident">x</span> <span class="op">&lt;</span> <span class="ident">X7</span> {(<span class="number">6</span>, <span class="ident">X6</span>)} <span class="kw">else</span> {(<span class="number">7</span>, <span class="ident">X7</span>)} }
        <span class="kw">else</span>           { <span class="kw">if</span> <span class="ident">x</span> <span class="op">&lt;</span> <span class="ident">X9</span> {(<span class="number">8</span>, <span class="ident">X8</span>)} <span class="kw">else</span> {(<span class="number">9</span>, <span class="ident">X9</span>)} }
    }
}

<span class="doccomment">/// The shortest mode implementation for Grisu.</span>
<span class="doccomment">///</span>
<span class="doccomment">/// It returns `None` when it would return an inexact representation otherwise.</span>
<span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">format_shortest_opt</span>(<span class="ident">d</span>: <span class="kw-2">&amp;</span><span class="ident">Decoded</span>,
                           <span class="ident">buf</span>: <span class="kw-2">&amp;</span><span class="kw-2">mut</span> [<span class="ident">u8</span>]) <span class="op">-&gt;</span> <span class="prelude-ty">Option</span><span class="op">&lt;</span>(<span class="comment">/*#digits*/</span> <span class="ident">usize</span>, <span class="comment">/*exp*/</span> <span class="ident">i16</span>)<span class="op">&gt;</span> {
    <span class="macro">assert</span><span class="macro">!</span>(<span class="ident">d</span>.<span class="ident">mant</span> <span class="op">&gt;</span> <span class="number">0</span>);
    <span class="macro">assert</span><span class="macro">!</span>(<span class="ident">d</span>.<span class="ident">minus</span> <span class="op">&gt;</span> <span class="number">0</span>);
    <span class="macro">assert</span><span class="macro">!</span>(<span class="ident">d</span>.<span class="ident">plus</span> <span class="op">&gt;</span> <span class="number">0</span>);
    <span class="macro">assert</span><span class="macro">!</span>(<span class="ident">d</span>.<span class="ident">mant</span>.<span class="ident">checked_add</span>(<span class="ident">d</span>.<span class="ident">plus</span>).<span class="ident">is_some</span>());
    <span class="macro">assert</span><span class="macro">!</span>(<span class="ident">d</span>.<span class="ident">mant</span>.<span class="ident">checked_sub</span>(<span class="ident">d</span>.<span class="ident">minus</span>).<span class="ident">is_some</span>());
    <span class="macro">assert</span><span class="macro">!</span>(<span class="ident">buf</span>.<span class="ident">len</span>() <span class="op">&gt;=</span> <span class="ident">MAX_SIG_DIGITS</span>);
    <span class="macro">assert</span><span class="macro">!</span>(<span class="ident">d</span>.<span class="ident">mant</span> <span class="op">+</span> <span class="ident">d</span>.<span class="ident">plus</span> <span class="op">&lt;</span> (<span class="number">1</span> <span class="op">&lt;&lt;</span> <span class="number">61</span>)); <span class="comment">// we need at least three bits of additional precision</span>

    <span class="comment">// start with the normalized values with the shared exponent</span>
    <span class="kw">let</span> <span class="ident">plus</span> <span class="op">=</span> <span class="ident">Fp</span> { <span class="ident">f</span>: <span class="ident">d</span>.<span class="ident">mant</span> <span class="op">+</span> <span class="ident">d</span>.<span class="ident">plus</span>, <span class="ident">e</span>: <span class="ident">d</span>.<span class="ident">exp</span> }.<span class="ident">normalize</span>();
    <span class="kw">let</span> <span class="ident">minus</span> <span class="op">=</span> <span class="ident">Fp</span> { <span class="ident">f</span>: <span class="ident">d</span>.<span class="ident">mant</span> <span class="op">-</span> <span class="ident">d</span>.<span class="ident">minus</span>, <span class="ident">e</span>: <span class="ident">d</span>.<span class="ident">exp</span> }.<span class="ident">normalize_to</span>(<span class="ident">plus</span>.<span class="ident">e</span>);
    <span class="kw">let</span> <span class="ident">v</span> <span class="op">=</span> <span class="ident">Fp</span> { <span class="ident">f</span>: <span class="ident">d</span>.<span class="ident">mant</span>, <span class="ident">e</span>: <span class="ident">d</span>.<span class="ident">exp</span> }.<span class="ident">normalize_to</span>(<span class="ident">plus</span>.<span class="ident">e</span>);

    <span class="comment">// find any `cached = 10^minusk` such that `ALPHA &lt;= minusk + plus.e + 64 &lt;= GAMMA`.</span>
    <span class="comment">// since `plus` is normalized, this means `2^(62 + ALPHA) &lt;= plus * cached &lt; 2^(64 + GAMMA)`;</span>
    <span class="comment">// given our choices of `ALPHA` and `GAMMA`, this puts `plus * cached` into `[4, 2^32)`.</span>
    <span class="comment">//</span>
    <span class="comment">// it is obviously desirable to maximize `GAMMA - ALPHA`,</span>
    <span class="comment">// so that we don&#39;t need many cached powers of 10, but there are some considerations:</span>
    <span class="comment">//</span>
    <span class="comment">// 1. we want to keep `floor(plus * cached)` within `u32` since it needs a costly division.</span>
    <span class="comment">//    (this is not really avoidable, remainder is required for accuracy estimation.)</span>
    <span class="comment">// 2. the remainder of `floor(plus * cached)` repeatedly gets multiplied by 10,</span>
    <span class="comment">//    and it should not overflow.</span>
    <span class="comment">//</span>
    <span class="comment">// the first gives `64 + GAMMA &lt;= 32`, while the second gives `10 * 2^-ALPHA &lt;= 2^64`;</span>
    <span class="comment">// -60 and -32 is the maximal range with this constraint, and V8 also uses them.</span>
    <span class="kw">let</span> (<span class="ident">minusk</span>, <span class="ident">cached</span>) <span class="op">=</span> <span class="ident">cached_power</span>(<span class="ident">ALPHA</span> <span class="op">-</span> <span class="ident">plus</span>.<span class="ident">e</span> <span class="op">-</span> <span class="number">64</span>, <span class="ident">GAMMA</span> <span class="op">-</span> <span class="ident">plus</span>.<span class="ident">e</span> <span class="op">-</span> <span class="number">64</span>);

    <span class="comment">// scale fps. this gives the maximal error of 1 ulp (proved from Theorem 5.1).</span>
    <span class="kw">let</span> <span class="ident">plus</span> <span class="op">=</span> <span class="ident">plus</span>.<span class="ident">mul</span>(<span class="kw-2">&amp;</span><span class="ident">cached</span>);
    <span class="kw">let</span> <span class="ident">minus</span> <span class="op">=</span> <span class="ident">minus</span>.<span class="ident">mul</span>(<span class="kw-2">&amp;</span><span class="ident">cached</span>);
    <span class="kw">let</span> <span class="ident">v</span> <span class="op">=</span> <span class="ident">v</span>.<span class="ident">mul</span>(<span class="kw-2">&amp;</span><span class="ident">cached</span>);
    <span class="macro">debug_assert_eq</span><span class="macro">!</span>(<span class="ident">plus</span>.<span class="ident">e</span>, <span class="ident">minus</span>.<span class="ident">e</span>);
    <span class="macro">debug_assert_eq</span><span class="macro">!</span>(<span class="ident">plus</span>.<span class="ident">e</span>, <span class="ident">v</span>.<span class="ident">e</span>);

    <span class="comment">//         +- actual range of minus</span>
    <span class="comment">//   | &lt;---|---------------------- unsafe region --------------------------&gt; |</span>
    <span class="comment">//   |     |                                                                 |</span>
    <span class="comment">//   |  |&lt;---&gt;|  | &lt;--------------- safe region ---------------&gt; |           |</span>
    <span class="comment">//   |  |     |  |                                               |           |</span>
    <span class="comment">//   |1 ulp|1 ulp|                 |1 ulp|1 ulp|                 |1 ulp|1 ulp|</span>
    <span class="comment">//   |&lt;---&gt;|&lt;---&gt;|                 |&lt;---&gt;|&lt;---&gt;|                 |&lt;---&gt;|&lt;---&gt;|</span>
    <span class="comment">//   |-----|-----|-------...-------|-----|-----|-------...-------|-----|-----|</span>
    <span class="comment">//   |   minus   |                 |     v     |                 |   plus    |</span>
    <span class="comment">// minus1     minus0           v - 1 ulp   v + 1 ulp           plus0       plus1</span>
    <span class="comment">//</span>
    <span class="comment">// above `minus`, `v` and `plus` are *quantized* approximations (error &lt; 1 ulp).</span>
    <span class="comment">// as we don&#39;t know the error is positive or negative, we use two approximations spaced equally</span>
    <span class="comment">// and have the maximal error of 2 ulps.</span>
    <span class="comment">//</span>
    <span class="comment">// the &quot;unsafe region&quot; is a liberal interval which we initially generate.</span>
    <span class="comment">// the &quot;safe region&quot; is a conservative interval which we only accept.</span>
    <span class="comment">// we start with the correct repr within the unsafe region, and try to find the closest repr</span>
    <span class="comment">// to `v` which is also within the safe region. if we can&#39;t, we give up.</span>
    <span class="kw">let</span> <span class="ident">plus1</span> <span class="op">=</span> <span class="ident">plus</span>.<span class="ident">f</span> <span class="op">+</span> <span class="number">1</span>;
<span class="comment">//  let plus0 = plus.f - 1; // only for explanation</span>
<span class="comment">//  let minus0 = minus.f + 1; // only for explanation</span>
    <span class="kw">let</span> <span class="ident">minus1</span> <span class="op">=</span> <span class="ident">minus</span>.<span class="ident">f</span> <span class="op">-</span> <span class="number">1</span>;
    <span class="kw">let</span> <span class="ident">e</span> <span class="op">=</span> <span class="op">-</span><span class="ident">plus</span>.<span class="ident">e</span> <span class="kw">as</span> <span class="ident">usize</span>; <span class="comment">// shared exponent</span>

    <span class="comment">// divide `plus1` into integral and fractional parts.</span>
    <span class="comment">// integral parts are guaranteed to fit in u32, since cached power guarantees `plus &lt; 2^32`</span>
    <span class="comment">// and normalized `plus.f` is always less than `2^64 - 2^4` due to the precision requirement.</span>
    <span class="kw">let</span> <span class="ident">plus1int</span> <span class="op">=</span> (<span class="ident">plus1</span> <span class="op">&gt;&gt;</span> <span class="ident">e</span>) <span class="kw">as</span> <span class="ident">u32</span>;
    <span class="kw">let</span> <span class="ident">plus1frac</span> <span class="op">=</span> <span class="ident">plus1</span> <span class="op">&amp;</span> ((<span class="number">1</span> <span class="op">&lt;&lt;</span> <span class="ident">e</span>) <span class="op">-</span> <span class="number">1</span>);

    <span class="comment">// calculate the largest `10^max_kappa` no more than `plus1` (thus `plus1 &lt; 10^(max_kappa+1)`).</span>
    <span class="comment">// this is an upper bound of `kappa` below.</span>
    <span class="kw">let</span> (<span class="ident">max_kappa</span>, <span class="ident">max_ten_kappa</span>) <span class="op">=</span> <span class="ident">max_pow10_no_more_than</span>(<span class="ident">plus1int</span>);

    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">i</span> <span class="op">=</span> <span class="number">0</span>;
    <span class="kw">let</span> <span class="ident">exp</span> <span class="op">=</span> <span class="ident">max_kappa</span> <span class="kw">as</span> <span class="ident">i16</span> <span class="op">-</span> <span class="ident">minusk</span> <span class="op">+</span> <span class="number">1</span>;

    <span class="comment">// Theorem 6.2: if `k` is the greatest integer s.t. `0 &lt;= y mod 10^k &lt;= y - x`,</span>
    <span class="comment">//              then `V = floor(y / 10^k) * 10^k` is in `[x, y]` and one of the shortest</span>
    <span class="comment">//              representations (with the minimal number of significant digits) in that range.</span>
    <span class="comment">//</span>
    <span class="comment">// find the digit length `kappa` between `(minus1, plus1)` as per Theorem 6.2.</span>
    <span class="comment">// Theorem 6.2 can be adopted to exclude `x` by requiring `y mod 10^k &lt; y - x` instead.</span>
    <span class="comment">// (e.g. `x` = 32000, `y` = 32777; `kappa` = 2 since `y mod 10^3 = 777 &lt; y - x = 777`.)</span>
    <span class="comment">// the algorithm relies on the later verification phase to exclude `y`.</span>
    <span class="kw">let</span> <span class="ident">delta1</span> <span class="op">=</span> <span class="ident">plus1</span> <span class="op">-</span> <span class="ident">minus1</span>;
<span class="comment">//  let delta1int = (delta1 &gt;&gt; e) as usize; // only for explanation</span>
    <span class="kw">let</span> <span class="ident">delta1frac</span> <span class="op">=</span> <span class="ident">delta1</span> <span class="op">&amp;</span> ((<span class="number">1</span> <span class="op">&lt;&lt;</span> <span class="ident">e</span>) <span class="op">-</span> <span class="number">1</span>);

    <span class="comment">// render integral parts, while checking for the accuracy at each step.</span>
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">kappa</span> <span class="op">=</span> <span class="ident">max_kappa</span> <span class="kw">as</span> <span class="ident">i16</span>;
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">ten_kappa</span> <span class="op">=</span> <span class="ident">max_ten_kappa</span>; <span class="comment">// 10^kappa</span>
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">remainder</span> <span class="op">=</span> <span class="ident">plus1int</span>; <span class="comment">// digits yet to be rendered</span>
    <span class="kw">loop</span> { <span class="comment">// we always have at least one digit to render, as `plus1 &gt;= 10^kappa`</span>
        <span class="comment">// invariants:</span>
        <span class="comment">// - `delta1int &lt;= remainder &lt; 10^(kappa+1)`</span>
        <span class="comment">// - `plus1int = d[0..n-1] * 10^(kappa+1) + remainder`</span>
        <span class="comment">//   (it follows that `remainder = plus1int % 10^(kappa+1)`)</span>

        <span class="comment">// divide `remainder` by `10^kappa`. both are scaled by `2^-e`.</span>
        <span class="kw">let</span> <span class="ident">q</span> <span class="op">=</span> <span class="ident">remainder</span> <span class="op">/</span> <span class="ident">ten_kappa</span>;
        <span class="kw">let</span> <span class="ident">r</span> <span class="op">=</span> <span class="ident">remainder</span> <span class="op">%</span> <span class="ident">ten_kappa</span>;
        <span class="macro">debug_assert</span><span class="macro">!</span>(<span class="ident">q</span> <span class="op">&lt;</span> <span class="number">10</span>);
        <span class="ident">buf</span>[<span class="ident">i</span>] <span class="op">=</span> <span class="string">b&#39;0&#39;</span> <span class="op">+</span> <span class="ident">q</span> <span class="kw">as</span> <span class="ident">u8</span>;
        <span class="ident">i</span> <span class="op">+=</span> <span class="number">1</span>;

        <span class="kw">let</span> <span class="ident">plus1rem</span> <span class="op">=</span> ((<span class="ident">r</span> <span class="kw">as</span> <span class="ident">u64</span>) <span class="op">&lt;&lt;</span> <span class="ident">e</span>) <span class="op">+</span> <span class="ident">plus1frac</span>; <span class="comment">// == (plus1 % 10^kappa) * 2^e</span>
        <span class="kw">if</span> <span class="ident">plus1rem</span> <span class="op">&lt;</span> <span class="ident">delta1</span> {
            <span class="comment">// `plus1 % 10^kappa &lt; delta1 = plus1 - minus1`; we&#39;ve found the correct `kappa`.</span>
            <span class="kw">let</span> <span class="ident">ten_kappa</span> <span class="op">=</span> (<span class="ident">ten_kappa</span> <span class="kw">as</span> <span class="ident">u64</span>) <span class="op">&lt;&lt;</span> <span class="ident">e</span>; <span class="comment">// scale 10^kappa back to the shared exponent</span>
            <span class="kw">return</span> <span class="ident">round_and_weed</span>(<span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="ident">buf</span>[..<span class="ident">i</span>], <span class="ident">exp</span>, <span class="ident">plus1rem</span>, <span class="ident">delta1</span>, <span class="ident">plus1</span> <span class="op">-</span> <span class="ident">v</span>.<span class="ident">f</span>, <span class="ident">ten_kappa</span>, <span class="number">1</span>);
        }

        <span class="comment">// break the loop when we have rendered all integral digits.</span>
        <span class="comment">// the exact number of digits is `max_kappa + 1` as `plus1 &lt; 10^(max_kappa+1)`.</span>
        <span class="kw">if</span> <span class="ident">i</span> <span class="op">&gt;</span> <span class="ident">max_kappa</span> <span class="kw">as</span> <span class="ident">usize</span> {
            <span class="macro">debug_assert_eq</span><span class="macro">!</span>(<span class="ident">ten_kappa</span>, <span class="number">1</span>);
            <span class="macro">debug_assert_eq</span><span class="macro">!</span>(<span class="ident">kappa</span>, <span class="number">0</span>);
            <span class="kw">break</span>;
        }

        <span class="comment">// restore invariants</span>
        <span class="ident">kappa</span> <span class="op">-=</span> <span class="number">1</span>;
        <span class="ident">ten_kappa</span> <span class="op">/=</span> <span class="number">10</span>;
        <span class="ident">remainder</span> <span class="op">=</span> <span class="ident">r</span>;
    }

    <span class="comment">// render fractional parts, while checking for the accuracy at each step.</span>
    <span class="comment">// this time we rely on repeated multiplications, as division will lose the precision.</span>
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">remainder</span> <span class="op">=</span> <span class="ident">plus1frac</span>;
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">threshold</span> <span class="op">=</span> <span class="ident">delta1frac</span>;
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">ulp</span> <span class="op">=</span> <span class="number">1</span>;
    <span class="kw">loop</span> { <span class="comment">// the next digit should be significant as we&#39;ve tested that before breaking out</span>
        <span class="comment">// invariants, where `m = max_kappa + 1` (# of digits in the integral part):</span>
        <span class="comment">// - `remainder &lt; 2^e`</span>
        <span class="comment">// - `plus1frac * 10^(n-m) = d[m..n-1] * 2^e + remainder`</span>

        <span class="ident">remainder</span> <span class="op">*=</span> <span class="number">10</span>; <span class="comment">// won&#39;t overflow, `2^e * 10 &lt; 2^64`</span>
        <span class="ident">threshold</span> <span class="op">*=</span> <span class="number">10</span>;
        <span class="ident">ulp</span> <span class="op">*=</span> <span class="number">10</span>;

        <span class="comment">// divide `remainder` by `10^kappa`.</span>
        <span class="comment">// both are scaled by `2^e / 10^kappa`, so the latter is implicit here.</span>
        <span class="kw">let</span> <span class="ident">q</span> <span class="op">=</span> <span class="ident">remainder</span> <span class="op">&gt;&gt;</span> <span class="ident">e</span>;
        <span class="kw">let</span> <span class="ident">r</span> <span class="op">=</span> <span class="ident">remainder</span> <span class="op">&amp;</span> ((<span class="number">1</span> <span class="op">&lt;&lt;</span> <span class="ident">e</span>) <span class="op">-</span> <span class="number">1</span>);
        <span class="macro">debug_assert</span><span class="macro">!</span>(<span class="ident">q</span> <span class="op">&lt;</span> <span class="number">10</span>);
        <span class="ident">buf</span>[<span class="ident">i</span>] <span class="op">=</span> <span class="string">b&#39;0&#39;</span> <span class="op">+</span> <span class="ident">q</span> <span class="kw">as</span> <span class="ident">u8</span>;
        <span class="ident">i</span> <span class="op">+=</span> <span class="number">1</span>;

        <span class="kw">if</span> <span class="ident">r</span> <span class="op">&lt;</span> <span class="ident">threshold</span> {
            <span class="kw">let</span> <span class="ident">ten_kappa</span> <span class="op">=</span> <span class="number">1</span> <span class="op">&lt;&lt;</span> <span class="ident">e</span>; <span class="comment">// implicit divisor</span>
            <span class="kw">return</span> <span class="ident">round_and_weed</span>(<span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="ident">buf</span>[..<span class="ident">i</span>], <span class="ident">exp</span>, <span class="ident">r</span>, <span class="ident">threshold</span>,
                                  (<span class="ident">plus1</span> <span class="op">-</span> <span class="ident">v</span>.<span class="ident">f</span>) <span class="op">*</span> <span class="ident">ulp</span>, <span class="ident">ten_kappa</span>, <span class="ident">ulp</span>);
        }

        <span class="comment">// restore invariants</span>
        <span class="ident">kappa</span> <span class="op">-=</span> <span class="number">1</span>;
        <span class="ident">remainder</span> <span class="op">=</span> <span class="ident">r</span>;
    }

    <span class="comment">// we&#39;ve generated all significant digits of `plus1`, but not sure if it&#39;s the optimal one.</span>
    <span class="comment">// for example, if `minus1` is 3.14153... and `plus1` is 3.14158..., there are 5 different</span>
    <span class="comment">// shortest representation from 3.14154 to 3.14158 but we only have the greatest one.</span>
    <span class="comment">// we have to successively decrease the last digit and check if this is the optimal repr.</span>
    <span class="comment">// there are at most 9 candidates (..1 to ..9), so this is fairly quick. (&quot;rounding&quot; phase)</span>
    <span class="comment">//</span>
    <span class="comment">// the function checks if this &quot;optimal&quot; repr is actually within the ulp ranges,</span>
    <span class="comment">// and also, it is possible that the &quot;second-to-optimal&quot; repr can actually be optimal</span>
    <span class="comment">// due to the rounding error. in either cases this returns `None`. (&quot;weeding&quot; phase)</span>
    <span class="comment">//</span>
    <span class="comment">// all arguments here are scaled by the common (but implicit) value `k`, so that:</span>
    <span class="comment">// - `remainder = (plus1 % 10^kappa) * k`</span>
    <span class="comment">// - `threshold = (plus1 - minus1) * k` (and also, `remainder &lt; threshold`)</span>
    <span class="comment">// - `plus1v = (plus1 - v) * k` (and also, `threshold &gt; plus1v` from prior invariants)</span>
    <span class="comment">// - `ten_kappa = 10^kappa * k`</span>
    <span class="comment">// - `ulp = 2^-e * k`</span>
    <span class="kw">fn</span> <span class="ident">round_and_weed</span>(<span class="ident">buf</span>: <span class="kw-2">&amp;</span><span class="kw-2">mut</span> [<span class="ident">u8</span>], <span class="ident">exp</span>: <span class="ident">i16</span>, <span class="ident">remainder</span>: <span class="ident">u64</span>, <span class="ident">threshold</span>: <span class="ident">u64</span>, <span class="ident">plus1v</span>: <span class="ident">u64</span>,
                      <span class="ident">ten_kappa</span>: <span class="ident">u64</span>, <span class="ident">ulp</span>: <span class="ident">u64</span>) <span class="op">-&gt;</span> <span class="prelude-ty">Option</span><span class="op">&lt;</span>(<span class="ident">usize</span>, <span class="ident">i16</span>)<span class="op">&gt;</span> {
        <span class="macro">assert</span><span class="macro">!</span>(<span class="op">!</span><span class="ident">buf</span>.<span class="ident">is_empty</span>());

        <span class="comment">// produce two approximations to `v` (actually `plus1 - v`) within 1.5 ulps.</span>
        <span class="comment">// the resulting representation should be the closest representation to both.</span>
        <span class="comment">//</span>
        <span class="comment">// here `plus1 - v` is used since calculations are done with respect to `plus1`</span>
        <span class="comment">// in order to avoid overflow/underflow (hence the seemingly swapped names).</span>
        <span class="kw">let</span> <span class="ident">plus1v_down</span> <span class="op">=</span> <span class="ident">plus1v</span> <span class="op">+</span> <span class="ident">ulp</span>; <span class="comment">// plus1 - (v - 1 ulp)</span>
        <span class="kw">let</span> <span class="ident">plus1v_up</span> <span class="op">=</span> <span class="ident">plus1v</span> <span class="op">-</span> <span class="ident">ulp</span>; <span class="comment">// plus1 - (v + 1 ulp)</span>

        <span class="comment">// decrease the last digit and stop at the closest representation to `v + 1 ulp`.</span>
        <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">plus1w</span> <span class="op">=</span> <span class="ident">remainder</span>; <span class="comment">// plus1w(n) = plus1 - w(n)</span>
        {
            <span class="kw">let</span> <span class="ident">last</span> <span class="op">=</span> <span class="ident">buf</span>.<span class="ident">last_mut</span>().<span class="ident">unwrap</span>();

            <span class="comment">// we work with the approximated digits `w(n)`, which is initially equal to `plus1 -</span>
            <span class="comment">// plus1 % 10^kappa`. after running the loop body `n` times, `w(n) = plus1 -</span>
            <span class="comment">// plus1 % 10^kappa - n * 10^kappa`. we set `plus1w(n) = plus1 - w(n) =</span>
            <span class="comment">// plus1 % 10^kappa + n * 10^kappa` (thus `remainder = plus1w(0)`) to simplify checks.</span>
            <span class="comment">// note that `plus1w(n)` is always increasing.</span>
            <span class="comment">//</span>
            <span class="comment">// we have three conditions to terminate. any of them will make the loop unable to</span>
            <span class="comment">// proceed, but we then have at least one valid representation known to be closest to</span>
            <span class="comment">// `v + 1 ulp` anyway. we will denote them as TC1 through TC3 for brevity.</span>
            <span class="comment">//</span>
            <span class="comment">// TC1: `w(n) &lt;= v + 1 ulp`, i.e. this is the last repr that can be the closest one.</span>
            <span class="comment">// this is equivalent to `plus1 - w(n) = plus1w(n) &gt;= plus1 - (v + 1 ulp) = plus1v_up`.</span>
            <span class="comment">// combined with TC2 (which checks if `w(n+1)` is valid), this prevents the possible</span>
            <span class="comment">// overflow on the calculation of `plus1w(n)`.</span>
            <span class="comment">//</span>
            <span class="comment">// TC2: `w(n+1) &lt; minus1`, i.e. the next repr definitely does not round to `v`.</span>
            <span class="comment">// this is equivalent to `plus1 - w(n) + 10^kappa = plus1w(n) + 10^kappa &gt;</span>
            <span class="comment">// plus1 - minus1 = threshold`. the left hand side can overflow, but we know</span>
            <span class="comment">// `threshold &gt; plus1v`, so if TC1 is false, `threshold - plus1w(n) &gt;</span>
            <span class="comment">// threshold - (plus1v - 1 ulp) &gt; 1 ulp` and we can safely test if</span>
            <span class="comment">// `threshold - plus1w(n) &lt; 10^kappa` instead.</span>
            <span class="comment">//</span>
            <span class="comment">// TC3: `abs(w(n) - (v + 1 ulp)) &lt;= abs(w(n+1) - (v + 1 ulp))`, i.e. the next repr is</span>
            <span class="comment">// no closer to `v + 1 ulp` than the current repr. given `z(n) = plus1v_up - plus1w(n)`,</span>
            <span class="comment">// this becomes `abs(z(n)) &lt;= abs(z(n+1))`. again assuming that TC1 is false, we have</span>
            <span class="comment">// `z(n) &gt; 0`. we have two cases to consider:</span>
            <span class="comment">//</span>
            <span class="comment">// - when `z(n+1) &gt;= 0`: TC3 becomes `z(n) &lt;= z(n+1)`. as `plus1w(n)` is increasing,</span>
            <span class="comment">//   `z(n)` should be decreasing and this is clearly false.</span>
            <span class="comment">// - when `z(n+1) &lt; 0`:</span>
            <span class="comment">//   - TC3a: the precondition is `plus1v_up &lt; plus1w(n) + 10^kappa`. assuming TC2 is</span>
            <span class="comment">//     false, `threshold &gt;= plus1w(n) + 10^kappa` so it cannot overflow.</span>
            <span class="comment">//   - TC3b: TC3 becomes `z(n) &lt;= -z(n+1)`, i.e. `plus1v_up - plus1w(n) &gt;=</span>
            <span class="comment">//     plus1w(n+1) - plus1v_up = plus1w(n) + 10^kappa - plus1v_up`. the negated TC1</span>
            <span class="comment">//     gives `plus1v_up &gt; plus1w(n)`, so it cannot overflow or underflow when</span>
            <span class="comment">//     combined with TC3a.</span>
            <span class="comment">//</span>
            <span class="comment">// consequently, we should stop when `TC1 || TC2 || (TC3a &amp;&amp; TC3b)`. the following is</span>
            <span class="comment">// equal to its inverse, `!TC1 &amp;&amp; !TC2 &amp;&amp; (!TC3a || !TC3b)`.</span>
            <span class="kw">while</span> <span class="ident">plus1w</span> <span class="op">&lt;</span> <span class="ident">plus1v_up</span> <span class="op">&amp;&amp;</span>
                  <span class="ident">threshold</span> <span class="op">-</span> <span class="ident">plus1w</span> <span class="op">&gt;=</span> <span class="ident">ten_kappa</span> <span class="op">&amp;&amp;</span>
                  (<span class="ident">plus1w</span> <span class="op">+</span> <span class="ident">ten_kappa</span> <span class="op">&lt;</span> <span class="ident">plus1v_up</span> <span class="op">||</span>
                   <span class="ident">plus1v_up</span> <span class="op">-</span> <span class="ident">plus1w</span> <span class="op">&gt;=</span> <span class="ident">plus1w</span> <span class="op">+</span> <span class="ident">ten_kappa</span> <span class="op">-</span> <span class="ident">plus1v_up</span>) {
                <span class="kw-2">*</span><span class="ident">last</span> <span class="op">-=</span> <span class="number">1</span>;
                <span class="macro">debug_assert</span><span class="macro">!</span>(<span class="kw-2">*</span><span class="ident">last</span> <span class="op">&gt;</span> <span class="string">b&#39;0&#39;</span>); <span class="comment">// the shortest repr cannot end with `0`</span>
                <span class="ident">plus1w</span> <span class="op">+=</span> <span class="ident">ten_kappa</span>;
            }
        }

        <span class="comment">// check if this representation is also the closest representation to `v - 1 ulp`.</span>
        <span class="comment">//</span>
        <span class="comment">// this is simply same to the terminating conditions for `v + 1 ulp`, with all `plus1v_up`</span>
        <span class="comment">// replaced by `plus1v_down` instead. overflow analysis equally holds.</span>
        <span class="kw">if</span> <span class="ident">plus1w</span> <span class="op">&lt;</span> <span class="ident">plus1v_down</span> <span class="op">&amp;&amp;</span>
           <span class="ident">threshold</span> <span class="op">-</span> <span class="ident">plus1w</span> <span class="op">&gt;=</span> <span class="ident">ten_kappa</span> <span class="op">&amp;&amp;</span>
           (<span class="ident">plus1w</span> <span class="op">+</span> <span class="ident">ten_kappa</span> <span class="op">&lt;</span> <span class="ident">plus1v_down</span> <span class="op">||</span>
            <span class="ident">plus1v_down</span> <span class="op">-</span> <span class="ident">plus1w</span> <span class="op">&gt;=</span> <span class="ident">plus1w</span> <span class="op">+</span> <span class="ident">ten_kappa</span> <span class="op">-</span> <span class="ident">plus1v_down</span>) {
            <span class="kw">return</span> <span class="prelude-val">None</span>;
        }

        <span class="comment">// now we have the closest representation to `v` between `plus1` and `minus1`.</span>
        <span class="comment">// this is too liberal, though, so we reject any `w(n)` not between `plus0` and `minus0`,</span>
        <span class="comment">// i.e. `plus1 - plus1w(n) &lt;= minus0` or `plus1 - plus1w(n) &gt;= plus0`. we utilize the facts</span>
        <span class="comment">// that `threshold = plus1 - minus1` and `plus1 - plus0 = minus0 - minus1 = 2 ulp`.</span>
        <span class="kw">if</span> <span class="number">2</span> <span class="op">*</span> <span class="ident">ulp</span> <span class="op">&lt;=</span> <span class="ident">plus1w</span> <span class="op">&amp;&amp;</span> <span class="ident">plus1w</span> <span class="op">&lt;=</span> <span class="ident">threshold</span> <span class="op">-</span> <span class="number">4</span> <span class="op">*</span> <span class="ident">ulp</span> {
            <span class="prelude-val">Some</span>((<span class="ident">buf</span>.<span class="ident">len</span>(), <span class="ident">exp</span>))
        } <span class="kw">else</span> {
            <span class="prelude-val">None</span>
        }
    }
}

<span class="doccomment">/// The shortest mode implementation for Grisu with Dragon fallback.</span>
<span class="doccomment">///</span>
<span class="doccomment">/// This should be used for most cases.</span>
<span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">format_shortest</span>(<span class="ident">d</span>: <span class="kw-2">&amp;</span><span class="ident">Decoded</span>, <span class="ident">buf</span>: <span class="kw-2">&amp;</span><span class="kw-2">mut</span> [<span class="ident">u8</span>]) <span class="op">-&gt;</span> (<span class="comment">/*#digits*/</span> <span class="ident">usize</span>, <span class="comment">/*exp*/</span> <span class="ident">i16</span>) {
    <span class="kw">use</span> <span class="ident">num</span>::<span class="ident">flt2dec</span>::<span class="ident">strategy</span>::<span class="ident">dragon</span>::<span class="ident">format_shortest</span> <span class="kw">as</span> <span class="ident">fallback</span>;
    <span class="kw">match</span> <span class="ident">format_shortest_opt</span>(<span class="ident">d</span>, <span class="ident">buf</span>) {
        <span class="prelude-val">Some</span>(<span class="ident">ret</span>) <span class="op">=&gt;</span> <span class="ident">ret</span>,
        <span class="prelude-val">None</span> <span class="op">=&gt;</span> <span class="ident">fallback</span>(<span class="ident">d</span>, <span class="ident">buf</span>),
    }
}

<span class="doccomment">/// The exact and fixed mode implementation for Grisu.</span>
<span class="doccomment">///</span>
<span class="doccomment">/// It returns `None` when it would return an inexact representation otherwise.</span>
<span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">format_exact_opt</span>(<span class="ident">d</span>: <span class="kw-2">&amp;</span><span class="ident">Decoded</span>, <span class="ident">buf</span>: <span class="kw-2">&amp;</span><span class="kw-2">mut</span> [<span class="ident">u8</span>], <span class="ident">limit</span>: <span class="ident">i16</span>)
                                <span class="op">-&gt;</span> <span class="prelude-ty">Option</span><span class="op">&lt;</span>(<span class="comment">/*#digits*/</span> <span class="ident">usize</span>, <span class="comment">/*exp*/</span> <span class="ident">i16</span>)<span class="op">&gt;</span> {
    <span class="macro">assert</span><span class="macro">!</span>(<span class="ident">d</span>.<span class="ident">mant</span> <span class="op">&gt;</span> <span class="number">0</span>);
    <span class="macro">assert</span><span class="macro">!</span>(<span class="ident">d</span>.<span class="ident">mant</span> <span class="op">&lt;</span> (<span class="number">1</span> <span class="op">&lt;&lt;</span> <span class="number">61</span>)); <span class="comment">// we need at least three bits of additional precision</span>
    <span class="macro">assert</span><span class="macro">!</span>(<span class="op">!</span><span class="ident">buf</span>.<span class="ident">is_empty</span>());

    <span class="comment">// normalize and scale `v`.</span>
    <span class="kw">let</span> <span class="ident">v</span> <span class="op">=</span> <span class="ident">Fp</span> { <span class="ident">f</span>: <span class="ident">d</span>.<span class="ident">mant</span>, <span class="ident">e</span>: <span class="ident">d</span>.<span class="ident">exp</span> }.<span class="ident">normalize</span>();
    <span class="kw">let</span> (<span class="ident">minusk</span>, <span class="ident">cached</span>) <span class="op">=</span> <span class="ident">cached_power</span>(<span class="ident">ALPHA</span> <span class="op">-</span> <span class="ident">v</span>.<span class="ident">e</span> <span class="op">-</span> <span class="number">64</span>, <span class="ident">GAMMA</span> <span class="op">-</span> <span class="ident">v</span>.<span class="ident">e</span> <span class="op">-</span> <span class="number">64</span>);
    <span class="kw">let</span> <span class="ident">v</span> <span class="op">=</span> <span class="ident">v</span>.<span class="ident">mul</span>(<span class="kw-2">&amp;</span><span class="ident">cached</span>);

    <span class="comment">// divide `v` into integral and fractional parts.</span>
    <span class="kw">let</span> <span class="ident">e</span> <span class="op">=</span> <span class="op">-</span><span class="ident">v</span>.<span class="ident">e</span> <span class="kw">as</span> <span class="ident">usize</span>;
    <span class="kw">let</span> <span class="ident">vint</span> <span class="op">=</span> (<span class="ident">v</span>.<span class="ident">f</span> <span class="op">&gt;&gt;</span> <span class="ident">e</span>) <span class="kw">as</span> <span class="ident">u32</span>;
    <span class="kw">let</span> <span class="ident">vfrac</span> <span class="op">=</span> <span class="ident">v</span>.<span class="ident">f</span> <span class="op">&amp;</span> ((<span class="number">1</span> <span class="op">&lt;&lt;</span> <span class="ident">e</span>) <span class="op">-</span> <span class="number">1</span>);

    <span class="comment">// both old `v` and new `v` (scaled by `10^-k`) has an error of &lt; 1 ulp (Theorem 5.1).</span>
    <span class="comment">// as we don&#39;t know the error is positive or negative, we use two approximations</span>
    <span class="comment">// spaced equally and have the maximal error of 2 ulps (same to the shortest case).</span>
    <span class="comment">//</span>
    <span class="comment">// the goal is to find the exactly rounded series of digits that are common to</span>
    <span class="comment">// both `v - 1 ulp` and `v + 1 ulp`, so that we are maximally confident.</span>
    <span class="comment">// if this is not possible, we don&#39;t know which one is the correct output for `v`,</span>
    <span class="comment">// so we give up and fall back.</span>
    <span class="comment">//</span>
    <span class="comment">// `err` is defined as `1 ulp * 2^e` here (same to the ulp in `vfrac`),</span>
    <span class="comment">// and we will scale it whenever `v` gets scaled.</span>
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">err</span> <span class="op">=</span> <span class="number">1</span>;

    <span class="comment">// calculate the largest `10^max_kappa` no more than `v` (thus `v &lt; 10^(max_kappa+1)`).</span>
    <span class="comment">// this is an upper bound of `kappa` below.</span>
    <span class="kw">let</span> (<span class="ident">max_kappa</span>, <span class="ident">max_ten_kappa</span>) <span class="op">=</span> <span class="ident">max_pow10_no_more_than</span>(<span class="ident">vint</span>);

    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">i</span> <span class="op">=</span> <span class="number">0</span>;
    <span class="kw">let</span> <span class="ident">exp</span> <span class="op">=</span> <span class="ident">max_kappa</span> <span class="kw">as</span> <span class="ident">i16</span> <span class="op">-</span> <span class="ident">minusk</span> <span class="op">+</span> <span class="number">1</span>;

    <span class="comment">// if we are working with the last-digit limitation, we need to shorten the buffer</span>
    <span class="comment">// before the actual rendering in order to avoid double rounding.</span>
    <span class="comment">// note that we have to enlarge the buffer again when rounding up happens!</span>
    <span class="kw">let</span> <span class="ident">len</span> <span class="op">=</span> <span class="kw">if</span> <span class="ident">exp</span> <span class="op">&lt;=</span> <span class="ident">limit</span> {
        <span class="comment">// oops, we cannot even produce *one* digit.</span>
        <span class="comment">// this is possible when, say, we&#39;ve got something like 9.5 and it&#39;s being rounded to 10.</span>
        <span class="comment">//</span>
        <span class="comment">// in principle we can immediately call `possibly_round` with an empty buffer,</span>
        <span class="comment">// but scaling `max_ten_kappa &lt;&lt; e` by 10 can result in overflow.</span>
        <span class="comment">// thus we are being sloppy here and widen the error range by a factor of 10.</span>
        <span class="comment">// this will increase the false negative rate, but only very, *very* slightly;</span>
        <span class="comment">// it can only matter noticeably when the mantissa is bigger than 60 bits.</span>
        <span class="kw">return</span> <span class="ident">possibly_round</span>(<span class="ident">buf</span>, <span class="number">0</span>, <span class="ident">exp</span>, <span class="ident">limit</span>, <span class="ident">v</span>.<span class="ident">f</span> <span class="op">/</span> <span class="number">10</span>, (<span class="ident">max_ten_kappa</span> <span class="kw">as</span> <span class="ident">u64</span>) <span class="op">&lt;&lt;</span> <span class="ident">e</span>, <span class="ident">err</span> <span class="op">&lt;&lt;</span> <span class="ident">e</span>);
    } <span class="kw">else</span> <span class="kw">if</span> ((<span class="ident">exp</span> <span class="kw">as</span> <span class="ident">i32</span> <span class="op">-</span> <span class="ident">limit</span> <span class="kw">as</span> <span class="ident">i32</span>) <span class="kw">as</span> <span class="ident">usize</span>) <span class="op">&lt;</span> <span class="ident">buf</span>.<span class="ident">len</span>() {
        (<span class="ident">exp</span> <span class="op">-</span> <span class="ident">limit</span>) <span class="kw">as</span> <span class="ident">usize</span>
    } <span class="kw">else</span> {
        <span class="ident">buf</span>.<span class="ident">len</span>()
    };
    <span class="macro">debug_assert</span><span class="macro">!</span>(<span class="ident">len</span> <span class="op">&gt;</span> <span class="number">0</span>);

    <span class="comment">// render integral parts.</span>
    <span class="comment">// the error is entirely fractional, so we don&#39;t need to check it in this part.</span>
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">kappa</span> <span class="op">=</span> <span class="ident">max_kappa</span> <span class="kw">as</span> <span class="ident">i16</span>;
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">ten_kappa</span> <span class="op">=</span> <span class="ident">max_ten_kappa</span>; <span class="comment">// 10^kappa</span>
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">remainder</span> <span class="op">=</span> <span class="ident">vint</span>; <span class="comment">// digits yet to be rendered</span>
    <span class="kw">loop</span> { <span class="comment">// we always have at least one digit to render</span>
        <span class="comment">// invariants:</span>
        <span class="comment">// - `remainder &lt; 10^(kappa+1)`</span>
        <span class="comment">// - `vint = d[0..n-1] * 10^(kappa+1) + remainder`</span>
        <span class="comment">//   (it follows that `remainder = vint % 10^(kappa+1)`)</span>

        <span class="comment">// divide `remainder` by `10^kappa`. both are scaled by `2^-e`.</span>
        <span class="kw">let</span> <span class="ident">q</span> <span class="op">=</span> <span class="ident">remainder</span> <span class="op">/</span> <span class="ident">ten_kappa</span>;
        <span class="kw">let</span> <span class="ident">r</span> <span class="op">=</span> <span class="ident">remainder</span> <span class="op">%</span> <span class="ident">ten_kappa</span>;
        <span class="macro">debug_assert</span><span class="macro">!</span>(<span class="ident">q</span> <span class="op">&lt;</span> <span class="number">10</span>);
        <span class="ident">buf</span>[<span class="ident">i</span>] <span class="op">=</span> <span class="string">b&#39;0&#39;</span> <span class="op">+</span> <span class="ident">q</span> <span class="kw">as</span> <span class="ident">u8</span>;
        <span class="ident">i</span> <span class="op">+=</span> <span class="number">1</span>;

        <span class="comment">// is the buffer full? run the rounding pass with the remainder.</span>
        <span class="kw">if</span> <span class="ident">i</span> <span class="op">==</span> <span class="ident">len</span> {
            <span class="kw">let</span> <span class="ident">vrem</span> <span class="op">=</span> ((<span class="ident">r</span> <span class="kw">as</span> <span class="ident">u64</span>) <span class="op">&lt;&lt;</span> <span class="ident">e</span>) <span class="op">+</span> <span class="ident">vfrac</span>; <span class="comment">// == (v % 10^kappa) * 2^e</span>
            <span class="kw">return</span> <span class="ident">possibly_round</span>(<span class="ident">buf</span>, <span class="ident">len</span>, <span class="ident">exp</span>, <span class="ident">limit</span>, <span class="ident">vrem</span>, (<span class="ident">ten_kappa</span> <span class="kw">as</span> <span class="ident">u64</span>) <span class="op">&lt;&lt;</span> <span class="ident">e</span>, <span class="ident">err</span> <span class="op">&lt;&lt;</span> <span class="ident">e</span>);
        }

        <span class="comment">// break the loop when we have rendered all integral digits.</span>
        <span class="comment">// the exact number of digits is `max_kappa + 1` as `plus1 &lt; 10^(max_kappa+1)`.</span>
        <span class="kw">if</span> <span class="ident">i</span> <span class="op">&gt;</span> <span class="ident">max_kappa</span> <span class="kw">as</span> <span class="ident">usize</span> {
            <span class="macro">debug_assert_eq</span><span class="macro">!</span>(<span class="ident">ten_kappa</span>, <span class="number">1</span>);
            <span class="macro">debug_assert_eq</span><span class="macro">!</span>(<span class="ident">kappa</span>, <span class="number">0</span>);
            <span class="kw">break</span>;
        }

        <span class="comment">// restore invariants</span>
        <span class="ident">kappa</span> <span class="op">-=</span> <span class="number">1</span>;
        <span class="ident">ten_kappa</span> <span class="op">/=</span> <span class="number">10</span>;
        <span class="ident">remainder</span> <span class="op">=</span> <span class="ident">r</span>;
    }

    <span class="comment">// render fractional parts.</span>
    <span class="comment">//</span>
    <span class="comment">// in principle we can continue to the last available digit and check for the accuracy.</span>
    <span class="comment">// unfortunately we are working with the finite-sized integers, so we need some criterion</span>
    <span class="comment">// to detect the overflow. V8 uses `remainder &gt; err`, which becomes false when</span>
    <span class="comment">// the first `i` significant digits of `v - 1 ulp` and `v` differ. however this rejects</span>
    <span class="comment">// too many otherwise valid input.</span>
    <span class="comment">//</span>
    <span class="comment">// since the later phase has a correct overflow detection, we instead use tighter criterion:</span>
    <span class="comment">// we continue til `err` exceeds `10^kappa / 2`, so that the range between `v - 1 ulp` and</span>
    <span class="comment">// `v + 1 ulp` definitely contains two or more rounded representations. this is same to</span>
    <span class="comment">// the first two comparisons from `possibly_round`, for the reference.</span>
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">remainder</span> <span class="op">=</span> <span class="ident">vfrac</span>;
    <span class="kw">let</span> <span class="ident">maxerr</span> <span class="op">=</span> <span class="number">1</span> <span class="op">&lt;&lt;</span> (<span class="ident">e</span> <span class="op">-</span> <span class="number">1</span>);
    <span class="kw">while</span> <span class="ident">err</span> <span class="op">&lt;</span> <span class="ident">maxerr</span> {
        <span class="comment">// invariants, where `m = max_kappa + 1` (# of digits in the integral part):</span>
        <span class="comment">// - `remainder &lt; 2^e`</span>
        <span class="comment">// - `vfrac * 10^(n-m) = d[m..n-1] * 2^e + remainder`</span>
        <span class="comment">// - `err = 10^(n-m)`</span>

        <span class="ident">remainder</span> <span class="op">*=</span> <span class="number">10</span>; <span class="comment">// won&#39;t overflow, `2^e * 10 &lt; 2^64`</span>
        <span class="ident">err</span> <span class="op">*=</span> <span class="number">10</span>; <span class="comment">// won&#39;t overflow, `err * 10 &lt; 2^e * 5 &lt; 2^64`</span>

        <span class="comment">// divide `remainder` by `10^kappa`.</span>
        <span class="comment">// both are scaled by `2^e / 10^kappa`, so the latter is implicit here.</span>
        <span class="kw">let</span> <span class="ident">q</span> <span class="op">=</span> <span class="ident">remainder</span> <span class="op">&gt;&gt;</span> <span class="ident">e</span>;
        <span class="kw">let</span> <span class="ident">r</span> <span class="op">=</span> <span class="ident">remainder</span> <span class="op">&amp;</span> ((<span class="number">1</span> <span class="op">&lt;&lt;</span> <span class="ident">e</span>) <span class="op">-</span> <span class="number">1</span>);
        <span class="macro">debug_assert</span><span class="macro">!</span>(<span class="ident">q</span> <span class="op">&lt;</span> <span class="number">10</span>);
        <span class="ident">buf</span>[<span class="ident">i</span>] <span class="op">=</span> <span class="string">b&#39;0&#39;</span> <span class="op">+</span> <span class="ident">q</span> <span class="kw">as</span> <span class="ident">u8</span>;
        <span class="ident">i</span> <span class="op">+=</span> <span class="number">1</span>;

        <span class="comment">// is the buffer full? run the rounding pass with the remainder.</span>
        <span class="kw">if</span> <span class="ident">i</span> <span class="op">==</span> <span class="ident">len</span> {
            <span class="kw">return</span> <span class="ident">possibly_round</span>(<span class="ident">buf</span>, <span class="ident">len</span>, <span class="ident">exp</span>, <span class="ident">limit</span>, <span class="ident">r</span>, <span class="number">1</span> <span class="op">&lt;&lt;</span> <span class="ident">e</span>, <span class="ident">err</span>);
        }

        <span class="comment">// restore invariants</span>
        <span class="ident">remainder</span> <span class="op">=</span> <span class="ident">r</span>;
    }

    <span class="comment">// further calculation is useless (`possibly_round` definitely fails), so we give up.</span>
    <span class="kw">return</span> <span class="prelude-val">None</span>;

    <span class="comment">// we&#39;ve generated all requested digits of `v`, which should be also same to corresponding</span>
    <span class="comment">// digits of `v - 1 ulp`. now we check if there is a unique representation shared by</span>
    <span class="comment">// both `v - 1 ulp` and `v + 1 ulp`; this can be either same to generated digits, or</span>
    <span class="comment">// to the rounded-up version of those digits. if the range contains multiple representations</span>
    <span class="comment">// of the same length, we cannot be sure and should return `None` instead.</span>
    <span class="comment">//</span>
    <span class="comment">// all arguments here are scaled by the common (but implicit) value `k`, so that:</span>
    <span class="comment">// - `remainder = (v % 10^kappa) * k`</span>
    <span class="comment">// - `ten_kappa = 10^kappa * k`</span>
    <span class="comment">// - `ulp = 2^-e * k`</span>
    <span class="kw">fn</span> <span class="ident">possibly_round</span>(<span class="ident">buf</span>: <span class="kw-2">&amp;</span><span class="kw-2">mut</span> [<span class="ident">u8</span>], <span class="kw-2">mut</span> <span class="ident">len</span>: <span class="ident">usize</span>, <span class="kw-2">mut</span> <span class="ident">exp</span>: <span class="ident">i16</span>, <span class="ident">limit</span>: <span class="ident">i16</span>,
                      <span class="ident">remainder</span>: <span class="ident">u64</span>, <span class="ident">ten_kappa</span>: <span class="ident">u64</span>, <span class="ident">ulp</span>: <span class="ident">u64</span>) <span class="op">-&gt;</span> <span class="prelude-ty">Option</span><span class="op">&lt;</span>(<span class="ident">usize</span>, <span class="ident">i16</span>)<span class="op">&gt;</span> {
        <span class="macro">debug_assert</span><span class="macro">!</span>(<span class="ident">remainder</span> <span class="op">&lt;</span> <span class="ident">ten_kappa</span>);

        <span class="comment">//           10^kappa</span>
        <span class="comment">//    :   :   :&lt;-&gt;:   :</span>
        <span class="comment">//    :   :   :   :   :</span>
        <span class="comment">//    :|1 ulp|1 ulp|  :</span>
        <span class="comment">//    :|&lt;---&gt;|&lt;---&gt;|  :</span>
        <span class="comment">// ----|-----|-----|----</span>
        <span class="comment">//     |     v     |</span>
        <span class="comment">// v - 1 ulp   v + 1 ulp</span>
        <span class="comment">//</span>
        <span class="comment">// (for the reference, the dotted line indicates the exact value for</span>
        <span class="comment">// possible representations in given number of digits.)</span>
        <span class="comment">//</span>
        <span class="comment">// error is too large that there are at least three possible representations</span>
        <span class="comment">// between `v - 1 ulp` and `v + 1 ulp`. we cannot determine which one is correct.</span>
        <span class="kw">if</span> <span class="ident">ulp</span> <span class="op">&gt;=</span> <span class="ident">ten_kappa</span> { <span class="kw">return</span> <span class="prelude-val">None</span>; }

        <span class="comment">//    10^kappa</span>
        <span class="comment">//   :&lt;-------&gt;:</span>
        <span class="comment">//   :         :</span>
        <span class="comment">//   : |1 ulp|1 ulp|</span>
        <span class="comment">//   : |&lt;---&gt;|&lt;---&gt;|</span>
        <span class="comment">// ----|-----|-----|----</span>
        <span class="comment">//     |     v     |</span>
        <span class="comment">// v - 1 ulp   v + 1 ulp</span>
        <span class="comment">//</span>
        <span class="comment">// in fact, 1/2 ulp is enough to introduce two possible representations.</span>
        <span class="comment">// (remember that we need a unique representation for both `v - 1 ulp` and `v + 1 ulp`.)</span>
        <span class="comment">// this won&#39;t overflow, as `ulp &lt; ten_kappa` from the first check.</span>
        <span class="kw">if</span> <span class="ident">ten_kappa</span> <span class="op">-</span> <span class="ident">ulp</span> <span class="op">&lt;=</span> <span class="ident">ulp</span> { <span class="kw">return</span> <span class="prelude-val">None</span>; }

        <span class="comment">//     remainder</span>
        <span class="comment">//       :&lt;-&gt;|                           :</span>
        <span class="comment">//       :   |                           :</span>
        <span class="comment">//       :&lt;--------- 10^kappa ----------&gt;:</span>
        <span class="comment">//     | :   |                           :</span>
        <span class="comment">//     |1 ulp|1 ulp|                     :</span>
        <span class="comment">//     |&lt;---&gt;|&lt;---&gt;|                     :</span>
        <span class="comment">// ----|-----|-----|------------------------</span>
        <span class="comment">//     |     v     |</span>
        <span class="comment">// v - 1 ulp   v + 1 ulp</span>
        <span class="comment">//</span>
        <span class="comment">// if `v + 1 ulp` is closer to the rounded-down representation (which is already in `buf`),</span>
        <span class="comment">// then we can safely return. note that `v - 1 ulp` *can* be less than the current</span>
        <span class="comment">// representation, but as `1 ulp &lt; 10^kappa / 2`, this condition is enough:</span>
        <span class="comment">// the distance between `v - 1 ulp` and the current representation</span>
        <span class="comment">// cannot exceed `10^kappa / 2`.</span>
        <span class="comment">//</span>
        <span class="comment">// the condition equals to `remainder + ulp &lt; 10^kappa / 2`.</span>
        <span class="comment">// since this can easily overflow, first check if `remainder &lt; 10^kappa / 2`.</span>
        <span class="comment">// we&#39;ve already verified that `ulp &lt; 10^kappa / 2`, so as long as</span>
        <span class="comment">// `10^kappa` did not overflow after all, the second check is fine.</span>
        <span class="kw">if</span> <span class="ident">ten_kappa</span> <span class="op">-</span> <span class="ident">remainder</span> <span class="op">&gt;</span> <span class="ident">remainder</span> <span class="op">&amp;&amp;</span> <span class="ident">ten_kappa</span> <span class="op">-</span> <span class="number">2</span> <span class="op">*</span> <span class="ident">remainder</span> <span class="op">&gt;=</span> <span class="number">2</span> <span class="op">*</span> <span class="ident">ulp</span> {
            <span class="kw">return</span> <span class="prelude-val">Some</span>((<span class="ident">len</span>, <span class="ident">exp</span>));
        }

        <span class="comment">//   :&lt;------- remainder ------&gt;|   :</span>
        <span class="comment">//   :                          |   :</span>
        <span class="comment">//   :&lt;--------- 10^kappa ---------&gt;:</span>
        <span class="comment">//   :                    |     |   : |</span>
        <span class="comment">//   :                    |1 ulp|1 ulp|</span>
        <span class="comment">//   :                    |&lt;---&gt;|&lt;---&gt;|</span>
        <span class="comment">// -----------------------|-----|-----|-----</span>
        <span class="comment">//                        |     v     |</span>
        <span class="comment">//                    v - 1 ulp   v + 1 ulp</span>
        <span class="comment">//</span>
        <span class="comment">// on the other hands, if `v - 1 ulp` is closer to the rounded-up representation,</span>
        <span class="comment">// we should round up and return. for the same reason we don&#39;t need to check `v + 1 ulp`.</span>
        <span class="comment">//</span>
        <span class="comment">// the condition equals to `remainder - ulp &gt;= 10^kappa / 2`.</span>
        <span class="comment">// again we first check if `remainder &gt; ulp` (note that this is not `remainder &gt;= ulp`,</span>
        <span class="comment">// as `10^kappa` is never zero). also note that `remainder - ulp &lt;= 10^kappa`,</span>
        <span class="comment">// so the second check does not overflow.</span>
        <span class="kw">if</span> <span class="ident">remainder</span> <span class="op">&gt;</span> <span class="ident">ulp</span> <span class="op">&amp;&amp;</span> <span class="ident">ten_kappa</span> <span class="op">-</span> (<span class="ident">remainder</span> <span class="op">-</span> <span class="ident">ulp</span>) <span class="op">&lt;=</span> <span class="ident">remainder</span> <span class="op">-</span> <span class="ident">ulp</span> {
            <span class="kw">if</span> <span class="kw">let</span> <span class="prelude-val">Some</span>(<span class="ident">c</span>) <span class="op">=</span> <span class="ident">round_up</span>(<span class="ident">buf</span>, <span class="ident">len</span>) {
                <span class="comment">// only add an additional digit when we&#39;ve been requested the fixed precision.</span>
                <span class="comment">// we also need to check that, if the original buffer was empty,</span>
                <span class="comment">// the additional digit can only be added when `exp == limit` (edge case).</span>
                <span class="ident">exp</span> <span class="op">+=</span> <span class="number">1</span>;
                <span class="kw">if</span> <span class="ident">exp</span> <span class="op">&gt;</span> <span class="ident">limit</span> <span class="op">&amp;&amp;</span> <span class="ident">len</span> <span class="op">&lt;</span> <span class="ident">buf</span>.<span class="ident">len</span>() {
                    <span class="ident">buf</span>[<span class="ident">len</span>] <span class="op">=</span> <span class="ident">c</span>;
                    <span class="ident">len</span> <span class="op">+=</span> <span class="number">1</span>;
                }
            }
            <span class="kw">return</span> <span class="prelude-val">Some</span>((<span class="ident">len</span>, <span class="ident">exp</span>));
        }

        <span class="comment">// otherwise we are doomed (i.e. some values between `v - 1 ulp` and `v + 1 ulp` are</span>
        <span class="comment">// rounding down and others are rounding up) and give up.</span>
        <span class="prelude-val">None</span>
    }
}

<span class="doccomment">/// The exact and fixed mode implementation for Grisu with Dragon fallback.</span>
<span class="doccomment">///</span>
<span class="doccomment">/// This should be used for most cases.</span>
<span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">format_exact</span>(<span class="ident">d</span>: <span class="kw-2">&amp;</span><span class="ident">Decoded</span>, <span class="ident">buf</span>: <span class="kw-2">&amp;</span><span class="kw-2">mut</span> [<span class="ident">u8</span>], <span class="ident">limit</span>: <span class="ident">i16</span>) <span class="op">-&gt;</span> (<span class="comment">/*#digits*/</span> <span class="ident">usize</span>, <span class="comment">/*exp*/</span> <span class="ident">i16</span>) {
    <span class="kw">use</span> <span class="ident">num</span>::<span class="ident">flt2dec</span>::<span class="ident">strategy</span>::<span class="ident">dragon</span>::<span class="ident">format_exact</span> <span class="kw">as</span> <span class="ident">fallback</span>;
    <span class="kw">match</span> <span class="ident">format_exact_opt</span>(<span class="ident">d</span>, <span class="ident">buf</span>, <span class="ident">limit</span>) {
        <span class="prelude-val">Some</span>(<span class="ident">ret</span>) <span class="op">=&gt;</span> <span class="ident">ret</span>,
        <span class="prelude-val">None</span> <span class="op">=&gt;</span> <span class="ident">fallback</span>(<span class="ident">d</span>, <span class="ident">buf</span>, <span class="ident">limit</span>),
    }
}
</pre>
</section>
    <section id='search' class="content hidden"></section>

    <section class="footer"></section>

    <aside id="help" class="hidden">
        <div>
            <h1 class="hidden">Help</h1>

            <div class="shortcuts">
                <h2>Keyboard Shortcuts</h2>

                <dl>
                    <dt>?</dt>
                    <dd>Show this help dialog</dd>
                    <dt>S</dt>
                    <dd>Focus the search field</dd>
                    <dt>&larrb;</dt>
                    <dd>Move up in search results</dd>
                    <dt>&rarrb;</dt>
                    <dd>Move down in search results</dd>
                    <dt>&#9166;</dt>
                    <dd>Go to active search result</dd>
                    <dt>+</dt>
                    <dd>Collapse/expand all sections</dd>
                </dl>
            </div>

            <div class="infos">
                <h2>Search Tricks</h2>

                <p>
                    Prefix searches with a type followed by a colon (e.g.
                    <code>fn:</code>) to restrict the search to a given type.
                </p>

                <p>
                    Accepted types are: <code>fn</code>, <code>mod</code>,
                    <code>struct</code>, <code>enum</code>,
                    <code>trait</code>, <code>type</code>, <code>macro</code>,
                    and <code>const</code>.
                </p>

                <p>
                    Search functions by type signature (e.g.
                    <code>vec -> usize</code> or <code>* -> vec</code>)
                </p>
            </div>
        </div>
    </aside>

    

    <script>
        window.rootPath = "../../../../../";
        window.currentCrate = "core";
    </script>
    <script src="../../../../../main.js"></script>
    <script defer src="../../../../../search-index.js"></script>
</body>
</html>