Sophie

Sophie

distrib > Mageia > 6 > armv7hl > media > core-updates > by-pkgid > 564935689ab5527f955e5449ded02799 > files > 2709

rust-doc-1.19.0-1.mga6.armv7hl.rpm

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <meta name="generator" content="rustdoc">
    <meta name="description" content="Source to the Rust file `src/libstd/collections/mod.rs`.">
    <meta name="keywords" content="rust, rustlang, rust-lang">

    <title>mod.rs.html -- source</title>

    <link rel="stylesheet" type="text/css" href="../../../normalize.css">
    <link rel="stylesheet" type="text/css" href="../../../rustdoc.css">
    <link rel="stylesheet" type="text/css" href="../../../main.css">
    

    <link rel="shortcut icon" href="https://doc.rust-lang.org/favicon.ico">
    
</head>
<body class="rustdoc source">
    <!--[if lte IE 8]>
    <div class="warning">
        This old browser is unsupported and will most likely display funky
        things.
    </div>
    <![endif]-->

    

    <nav class="sidebar">
        <a href='../../../std/index.html'><img src='https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png' alt='logo' width='100'></a>
        
    </nav>

    <nav class="sub">
        <form class="search-form js-only">
            <div class="search-container">
                <input class="search-input" name="search"
                       autocomplete="off"
                       placeholder="Click or press ‘S’ to search, ‘?’ for more options…"
                       type="search">
            </div>
        </form>
    </nav>

    <section id='main' class="content"><pre class="line-numbers"><span id="1">  1</span>
<span id="2">  2</span>
<span id="3">  3</span>
<span id="4">  4</span>
<span id="5">  5</span>
<span id="6">  6</span>
<span id="7">  7</span>
<span id="8">  8</span>
<span id="9">  9</span>
<span id="10"> 10</span>
<span id="11"> 11</span>
<span id="12"> 12</span>
<span id="13"> 13</span>
<span id="14"> 14</span>
<span id="15"> 15</span>
<span id="16"> 16</span>
<span id="17"> 17</span>
<span id="18"> 18</span>
<span id="19"> 19</span>
<span id="20"> 20</span>
<span id="21"> 21</span>
<span id="22"> 22</span>
<span id="23"> 23</span>
<span id="24"> 24</span>
<span id="25"> 25</span>
<span id="26"> 26</span>
<span id="27"> 27</span>
<span id="28"> 28</span>
<span id="29"> 29</span>
<span id="30"> 30</span>
<span id="31"> 31</span>
<span id="32"> 32</span>
<span id="33"> 33</span>
<span id="34"> 34</span>
<span id="35"> 35</span>
<span id="36"> 36</span>
<span id="37"> 37</span>
<span id="38"> 38</span>
<span id="39"> 39</span>
<span id="40"> 40</span>
<span id="41"> 41</span>
<span id="42"> 42</span>
<span id="43"> 43</span>
<span id="44"> 44</span>
<span id="45"> 45</span>
<span id="46"> 46</span>
<span id="47"> 47</span>
<span id="48"> 48</span>
<span id="49"> 49</span>
<span id="50"> 50</span>
<span id="51"> 51</span>
<span id="52"> 52</span>
<span id="53"> 53</span>
<span id="54"> 54</span>
<span id="55"> 55</span>
<span id="56"> 56</span>
<span id="57"> 57</span>
<span id="58"> 58</span>
<span id="59"> 59</span>
<span id="60"> 60</span>
<span id="61"> 61</span>
<span id="62"> 62</span>
<span id="63"> 63</span>
<span id="64"> 64</span>
<span id="65"> 65</span>
<span id="66"> 66</span>
<span id="67"> 67</span>
<span id="68"> 68</span>
<span id="69"> 69</span>
<span id="70"> 70</span>
<span id="71"> 71</span>
<span id="72"> 72</span>
<span id="73"> 73</span>
<span id="74"> 74</span>
<span id="75"> 75</span>
<span id="76"> 76</span>
<span id="77"> 77</span>
<span id="78"> 78</span>
<span id="79"> 79</span>
<span id="80"> 80</span>
<span id="81"> 81</span>
<span id="82"> 82</span>
<span id="83"> 83</span>
<span id="84"> 84</span>
<span id="85"> 85</span>
<span id="86"> 86</span>
<span id="87"> 87</span>
<span id="88"> 88</span>
<span id="89"> 89</span>
<span id="90"> 90</span>
<span id="91"> 91</span>
<span id="92"> 92</span>
<span id="93"> 93</span>
<span id="94"> 94</span>
<span id="95"> 95</span>
<span id="96"> 96</span>
<span id="97"> 97</span>
<span id="98"> 98</span>
<span id="99"> 99</span>
<span id="100">100</span>
<span id="101">101</span>
<span id="102">102</span>
<span id="103">103</span>
<span id="104">104</span>
<span id="105">105</span>
<span id="106">106</span>
<span id="107">107</span>
<span id="108">108</span>
<span id="109">109</span>
<span id="110">110</span>
<span id="111">111</span>
<span id="112">112</span>
<span id="113">113</span>
<span id="114">114</span>
<span id="115">115</span>
<span id="116">116</span>
<span id="117">117</span>
<span id="118">118</span>
<span id="119">119</span>
<span id="120">120</span>
<span id="121">121</span>
<span id="122">122</span>
<span id="123">123</span>
<span id="124">124</span>
<span id="125">125</span>
<span id="126">126</span>
<span id="127">127</span>
<span id="128">128</span>
<span id="129">129</span>
<span id="130">130</span>
<span id="131">131</span>
<span id="132">132</span>
<span id="133">133</span>
<span id="134">134</span>
<span id="135">135</span>
<span id="136">136</span>
<span id="137">137</span>
<span id="138">138</span>
<span id="139">139</span>
<span id="140">140</span>
<span id="141">141</span>
<span id="142">142</span>
<span id="143">143</span>
<span id="144">144</span>
<span id="145">145</span>
<span id="146">146</span>
<span id="147">147</span>
<span id="148">148</span>
<span id="149">149</span>
<span id="150">150</span>
<span id="151">151</span>
<span id="152">152</span>
<span id="153">153</span>
<span id="154">154</span>
<span id="155">155</span>
<span id="156">156</span>
<span id="157">157</span>
<span id="158">158</span>
<span id="159">159</span>
<span id="160">160</span>
<span id="161">161</span>
<span id="162">162</span>
<span id="163">163</span>
<span id="164">164</span>
<span id="165">165</span>
<span id="166">166</span>
<span id="167">167</span>
<span id="168">168</span>
<span id="169">169</span>
<span id="170">170</span>
<span id="171">171</span>
<span id="172">172</span>
<span id="173">173</span>
<span id="174">174</span>
<span id="175">175</span>
<span id="176">176</span>
<span id="177">177</span>
<span id="178">178</span>
<span id="179">179</span>
<span id="180">180</span>
<span id="181">181</span>
<span id="182">182</span>
<span id="183">183</span>
<span id="184">184</span>
<span id="185">185</span>
<span id="186">186</span>
<span id="187">187</span>
<span id="188">188</span>
<span id="189">189</span>
<span id="190">190</span>
<span id="191">191</span>
<span id="192">192</span>
<span id="193">193</span>
<span id="194">194</span>
<span id="195">195</span>
<span id="196">196</span>
<span id="197">197</span>
<span id="198">198</span>
<span id="199">199</span>
<span id="200">200</span>
<span id="201">201</span>
<span id="202">202</span>
<span id="203">203</span>
<span id="204">204</span>
<span id="205">205</span>
<span id="206">206</span>
<span id="207">207</span>
<span id="208">208</span>
<span id="209">209</span>
<span id="210">210</span>
<span id="211">211</span>
<span id="212">212</span>
<span id="213">213</span>
<span id="214">214</span>
<span id="215">215</span>
<span id="216">216</span>
<span id="217">217</span>
<span id="218">218</span>
<span id="219">219</span>
<span id="220">220</span>
<span id="221">221</span>
<span id="222">222</span>
<span id="223">223</span>
<span id="224">224</span>
<span id="225">225</span>
<span id="226">226</span>
<span id="227">227</span>
<span id="228">228</span>
<span id="229">229</span>
<span id="230">230</span>
<span id="231">231</span>
<span id="232">232</span>
<span id="233">233</span>
<span id="234">234</span>
<span id="235">235</span>
<span id="236">236</span>
<span id="237">237</span>
<span id="238">238</span>
<span id="239">239</span>
<span id="240">240</span>
<span id="241">241</span>
<span id="242">242</span>
<span id="243">243</span>
<span id="244">244</span>
<span id="245">245</span>
<span id="246">246</span>
<span id="247">247</span>
<span id="248">248</span>
<span id="249">249</span>
<span id="250">250</span>
<span id="251">251</span>
<span id="252">252</span>
<span id="253">253</span>
<span id="254">254</span>
<span id="255">255</span>
<span id="256">256</span>
<span id="257">257</span>
<span id="258">258</span>
<span id="259">259</span>
<span id="260">260</span>
<span id="261">261</span>
<span id="262">262</span>
<span id="263">263</span>
<span id="264">264</span>
<span id="265">265</span>
<span id="266">266</span>
<span id="267">267</span>
<span id="268">268</span>
<span id="269">269</span>
<span id="270">270</span>
<span id="271">271</span>
<span id="272">272</span>
<span id="273">273</span>
<span id="274">274</span>
<span id="275">275</span>
<span id="276">276</span>
<span id="277">277</span>
<span id="278">278</span>
<span id="279">279</span>
<span id="280">280</span>
<span id="281">281</span>
<span id="282">282</span>
<span id="283">283</span>
<span id="284">284</span>
<span id="285">285</span>
<span id="286">286</span>
<span id="287">287</span>
<span id="288">288</span>
<span id="289">289</span>
<span id="290">290</span>
<span id="291">291</span>
<span id="292">292</span>
<span id="293">293</span>
<span id="294">294</span>
<span id="295">295</span>
<span id="296">296</span>
<span id="297">297</span>
<span id="298">298</span>
<span id="299">299</span>
<span id="300">300</span>
<span id="301">301</span>
<span id="302">302</span>
<span id="303">303</span>
<span id="304">304</span>
<span id="305">305</span>
<span id="306">306</span>
<span id="307">307</span>
<span id="308">308</span>
<span id="309">309</span>
<span id="310">310</span>
<span id="311">311</span>
<span id="312">312</span>
<span id="313">313</span>
<span id="314">314</span>
<span id="315">315</span>
<span id="316">316</span>
<span id="317">317</span>
<span id="318">318</span>
<span id="319">319</span>
<span id="320">320</span>
<span id="321">321</span>
<span id="322">322</span>
<span id="323">323</span>
<span id="324">324</span>
<span id="325">325</span>
<span id="326">326</span>
<span id="327">327</span>
<span id="328">328</span>
<span id="329">329</span>
<span id="330">330</span>
<span id="331">331</span>
<span id="332">332</span>
<span id="333">333</span>
<span id="334">334</span>
<span id="335">335</span>
<span id="336">336</span>
<span id="337">337</span>
<span id="338">338</span>
<span id="339">339</span>
<span id="340">340</span>
<span id="341">341</span>
<span id="342">342</span>
<span id="343">343</span>
<span id="344">344</span>
<span id="345">345</span>
<span id="346">346</span>
<span id="347">347</span>
<span id="348">348</span>
<span id="349">349</span>
<span id="350">350</span>
<span id="351">351</span>
<span id="352">352</span>
<span id="353">353</span>
<span id="354">354</span>
<span id="355">355</span>
<span id="356">356</span>
<span id="357">357</span>
<span id="358">358</span>
<span id="359">359</span>
<span id="360">360</span>
<span id="361">361</span>
<span id="362">362</span>
<span id="363">363</span>
<span id="364">364</span>
<span id="365">365</span>
<span id="366">366</span>
<span id="367">367</span>
<span id="368">368</span>
<span id="369">369</span>
<span id="370">370</span>
<span id="371">371</span>
<span id="372">372</span>
<span id="373">373</span>
<span id="374">374</span>
<span id="375">375</span>
<span id="376">376</span>
<span id="377">377</span>
<span id="378">378</span>
<span id="379">379</span>
<span id="380">380</span>
<span id="381">381</span>
<span id="382">382</span>
<span id="383">383</span>
<span id="384">384</span>
<span id="385">385</span>
<span id="386">386</span>
<span id="387">387</span>
<span id="388">388</span>
<span id="389">389</span>
<span id="390">390</span>
<span id="391">391</span>
<span id="392">392</span>
<span id="393">393</span>
<span id="394">394</span>
<span id="395">395</span>
<span id="396">396</span>
<span id="397">397</span>
<span id="398">398</span>
<span id="399">399</span>
<span id="400">400</span>
<span id="401">401</span>
<span id="402">402</span>
<span id="403">403</span>
<span id="404">404</span>
<span id="405">405</span>
<span id="406">406</span>
<span id="407">407</span>
<span id="408">408</span>
<span id="409">409</span>
<span id="410">410</span>
<span id="411">411</span>
<span id="412">412</span>
<span id="413">413</span>
<span id="414">414</span>
<span id="415">415</span>
<span id="416">416</span>
<span id="417">417</span>
<span id="418">418</span>
<span id="419">419</span>
<span id="420">420</span>
<span id="421">421</span>
<span id="422">422</span>
<span id="423">423</span>
<span id="424">424</span>
<span id="425">425</span>
<span id="426">426</span>
<span id="427">427</span>
<span id="428">428</span>
<span id="429">429</span>
<span id="430">430</span>
<span id="431">431</span>
<span id="432">432</span>
<span id="433">433</span>
<span id="434">434</span>
<span id="435">435</span>
<span id="436">436</span>
<span id="437">437</span>
<span id="438">438</span>
<span id="439">439</span>
<span id="440">440</span>
<span id="441">441</span>
<span id="442">442</span>
<span id="443">443</span>
<span id="444">444</span>
<span id="445">445</span>
<span id="446">446</span>
<span id="447">447</span>
<span id="448">448</span>
<span id="449">449</span>
<span id="450">450</span>
<span id="451">451</span>
<span id="452">452</span>
<span id="453">453</span>
<span id="454">454</span>
<span id="455">455</span>
</pre><pre class="rust ">
<span class="comment">// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT</span>
<span class="comment">// file at the top-level directory of this distribution and at</span>
<span class="comment">// http://rust-lang.org/COPYRIGHT.</span>
<span class="comment">//</span>
<span class="comment">// Licensed under the Apache License, Version 2.0 &lt;LICENSE-APACHE or</span>
<span class="comment">// http://www.apache.org/licenses/LICENSE-2.0&gt; or the MIT license</span>
<span class="comment">// &lt;LICENSE-MIT or http://opensource.org/licenses/MIT&gt;, at your</span>
<span class="comment">// option. This file may not be copied, modified, or distributed</span>
<span class="comment">// except according to those terms.</span>

<span class="doccomment">//! Collection types.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Rust&#39;s standard collection library provides efficient implementations of the</span>
<span class="doccomment">//! most common general purpose programming data structures. By using the</span>
<span class="doccomment">//! standard implementations, it should be possible for two libraries to</span>
<span class="doccomment">//! communicate without significant data conversion.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! To get this out of the way: you should probably just use [`Vec`] or [`HashMap`].</span>
<span class="doccomment">//! These two collections cover most use cases for generic data storage and</span>
<span class="doccomment">//! processing. They are exceptionally good at doing what they do. All the other</span>
<span class="doccomment">//! collections in the standard library have specific use cases where they are</span>
<span class="doccomment">//! the optimal choice, but these cases are borderline *niche* in comparison.</span>
<span class="doccomment">//! Even when `Vec` and `HashMap` are technically suboptimal, they&#39;re probably a</span>
<span class="doccomment">//! good enough choice to get started.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Rust&#39;s collections can be grouped into four major categories:</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! * Sequences: [`Vec`], [`VecDeque`], [`LinkedList`]</span>
<span class="doccomment">//! * Maps: [`HashMap`], [`BTreeMap`]</span>
<span class="doccomment">//! * Sets: [`HashSet`], [`BTreeSet`]</span>
<span class="doccomment">//! * Misc: [`BinaryHeap`]</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! # When Should You Use Which Collection?</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! These are fairly high-level and quick break-downs of when each collection</span>
<span class="doccomment">//! should be considered. Detailed discussions of strengths and weaknesses of</span>
<span class="doccomment">//! individual collections can be found on their own documentation pages.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ### Use a `Vec` when:</span>
<span class="doccomment">//! * You want to collect items up to be processed or sent elsewhere later, and</span>
<span class="doccomment">//!   don&#39;t care about any properties of the actual values being stored.</span>
<span class="doccomment">//! * You want a sequence of elements in a particular order, and will only be</span>
<span class="doccomment">//!   appending to (or near) the end.</span>
<span class="doccomment">//! * You want a stack.</span>
<span class="doccomment">//! * You want a resizable array.</span>
<span class="doccomment">//! * You want a heap-allocated array.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ### Use a `VecDeque` when:</span>
<span class="doccomment">//! * You want a [`Vec`] that supports efficient insertion at both ends of the</span>
<span class="doccomment">//!   sequence.</span>
<span class="doccomment">//! * You want a queue.</span>
<span class="doccomment">//! * You want a double-ended queue (deque).</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ### Use a `LinkedList` when:</span>
<span class="doccomment">//! * You want a [`Vec`] or [`VecDeque`] of unknown size, and can&#39;t tolerate</span>
<span class="doccomment">//!   amortization.</span>
<span class="doccomment">//! * You want to efficiently split and append lists.</span>
<span class="doccomment">//! * You are *absolutely* certain you *really*, *truly*, want a doubly linked</span>
<span class="doccomment">//!   list.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ### Use a `HashMap` when:</span>
<span class="doccomment">//! * You want to associate arbitrary keys with an arbitrary value.</span>
<span class="doccomment">//! * You want a cache.</span>
<span class="doccomment">//! * You want a map, with no extra functionality.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ### Use a `BTreeMap` when:</span>
<span class="doccomment">//! * You&#39;re interested in what the smallest or largest key-value pair is.</span>
<span class="doccomment">//! * You want to find the largest or smallest key that is smaller or larger</span>
<span class="doccomment">//!   than something.</span>
<span class="doccomment">//! * You want to be able to get all of the entries in order on-demand.</span>
<span class="doccomment">//! * You want a map sorted by its keys.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ### Use the `Set` variant of any of these `Map`s when:</span>
<span class="doccomment">//! * You just want to remember which keys you&#39;ve seen.</span>
<span class="doccomment">//! * There is no meaningful value to associate with your keys.</span>
<span class="doccomment">//! * You just want a set.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ### Use a `BinaryHeap` when:</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! * You want to store a bunch of elements, but only ever want to process the</span>
<span class="doccomment">//!   &quot;biggest&quot; or &quot;most important&quot; one at any given time.</span>
<span class="doccomment">//! * You want a priority queue.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! # Performance</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Choosing the right collection for the job requires an understanding of what</span>
<span class="doccomment">//! each collection is good at. Here we briefly summarize the performance of</span>
<span class="doccomment">//! different collections for certain important operations. For further details,</span>
<span class="doccomment">//! see each type&#39;s documentation, and note that the names of actual methods may</span>
<span class="doccomment">//! differ from the tables below on certain collections.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Throughout the documentation, we will follow a few conventions. For all</span>
<span class="doccomment">//! operations, the collection&#39;s size is denoted by n. If another collection is</span>
<span class="doccomment">//! involved in the operation, it contains m elements. Operations which have an</span>
<span class="doccomment">//! *amortized* cost are suffixed with a `*`. Operations with an *expected*</span>
<span class="doccomment">//! cost are suffixed with a `~`.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! All amortized costs are for the potential need to resize when capacity is</span>
<span class="doccomment">//! exhausted. If a resize occurs it will take O(n) time. Our collections never</span>
<span class="doccomment">//! automatically shrink, so removal operations aren&#39;t amortized. Over a</span>
<span class="doccomment">//! sufficiently large series of operations, the average cost per operation will</span>
<span class="doccomment">//! deterministically equal the given cost.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Only [`HashMap`] has expected costs, due to the probabilistic nature of hashing.</span>
<span class="doccomment">//! It is theoretically possible, though very unlikely, for [`HashMap`] to</span>
<span class="doccomment">//! experience worse performance.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ## Sequences</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! |                | get(i)         | insert(i)       | remove(i)      | append | split_off(i)   |</span>
<span class="doccomment">//! |----------------|----------------|-----------------|----------------|--------|----------------|</span>
<span class="doccomment">//! | [`Vec`]        | O(1)           | O(n-i)*         | O(n-i)         | O(m)*  | O(n-i)         |</span>
<span class="doccomment">//! | [`VecDeque`]   | O(1)           | O(min(i, n-i))* | O(min(i, n-i)) | O(m)*  | O(min(i, n-i)) |</span>
<span class="doccomment">//! | [`LinkedList`] | O(min(i, n-i)) | O(min(i, n-i))  | O(min(i, n-i)) | O(1)   | O(min(i, n-i)) |</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Note that where ties occur, [`Vec`] is generally going to be faster than [`VecDeque`], and</span>
<span class="doccomment">//! [`VecDeque`] is generally going to be faster than [`LinkedList`].</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ## Maps</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! For Sets, all operations have the cost of the equivalent Map operation.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! |              | get       | insert   | remove   | predecessor | append |</span>
<span class="doccomment">//! |--------------|-----------|----------|----------|-------------|--------|</span>
<span class="doccomment">//! | [`HashMap`]  | O(1)~     | O(1)~*   | O(1)~    | N/A         | N/A    |</span>
<span class="doccomment">//! | [`BTreeMap`] | O(log n)  | O(log n) | O(log n) | O(log n)    | O(n+m) |</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! # Correct and Efficient Usage of Collections</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Of course, knowing which collection is the right one for the job doesn&#39;t</span>
<span class="doccomment">//! instantly permit you to use it correctly. Here are some quick tips for</span>
<span class="doccomment">//! efficient and correct usage of the standard collections in general. If</span>
<span class="doccomment">//! you&#39;re interested in how to use a specific collection in particular, consult</span>
<span class="doccomment">//! its documentation for detailed discussion and code examples.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ## Capacity Management</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Many collections provide several constructors and methods that refer to</span>
<span class="doccomment">//! &quot;capacity&quot;. These collections are generally built on top of an array.</span>
<span class="doccomment">//! Optimally, this array would be exactly the right size to fit only the</span>
<span class="doccomment">//! elements stored in the collection, but for the collection to do this would</span>
<span class="doccomment">//! be very inefficient. If the backing array was exactly the right size at all</span>
<span class="doccomment">//! times, then every time an element is inserted, the collection would have to</span>
<span class="doccomment">//! grow the array to fit it. Due to the way memory is allocated and managed on</span>
<span class="doccomment">//! most computers, this would almost surely require allocating an entirely new</span>
<span class="doccomment">//! array and copying every single element from the old one into the new one.</span>
<span class="doccomment">//! Hopefully you can see that this wouldn&#39;t be very efficient to do on every</span>
<span class="doccomment">//! operation.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Most collections therefore use an *amortized* allocation strategy. They</span>
<span class="doccomment">//! generally let themselves have a fair amount of unoccupied space so that they</span>
<span class="doccomment">//! only have to grow on occasion. When they do grow, they allocate a</span>
<span class="doccomment">//! substantially larger array to move the elements into so that it will take a</span>
<span class="doccomment">//! while for another grow to be required. While this strategy is great in</span>
<span class="doccomment">//! general, it would be even better if the collection *never* had to resize its</span>
<span class="doccomment">//! backing array. Unfortunately, the collection itself doesn&#39;t have enough</span>
<span class="doccomment">//! information to do this itself. Therefore, it is up to us programmers to give</span>
<span class="doccomment">//! it hints.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Any `with_capacity` constructor will instruct the collection to allocate</span>
<span class="doccomment">//! enough space for the specified number of elements. Ideally this will be for</span>
<span class="doccomment">//! exactly that many elements, but some implementation details may prevent</span>
<span class="doccomment">//! this. [`Vec`] and [`VecDeque`] can be relied on to allocate exactly the</span>
<span class="doccomment">//! requested amount, though. Use `with_capacity` when you know exactly how many</span>
<span class="doccomment">//! elements will be inserted, or at least have a reasonable upper-bound on that</span>
<span class="doccomment">//! number.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! When anticipating a large influx of elements, the `reserve` family of</span>
<span class="doccomment">//! methods can be used to hint to the collection how much room it should make</span>
<span class="doccomment">//! for the coming items. As with `with_capacity`, the precise behavior of</span>
<span class="doccomment">//! these methods will be specific to the collection of interest.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! For optimal performance, collections will generally avoid shrinking</span>
<span class="doccomment">//! themselves. If you believe that a collection will not soon contain any more</span>
<span class="doccomment">//! elements, or just really need the memory, the `shrink_to_fit` method prompts</span>
<span class="doccomment">//! the collection to shrink the backing array to the minimum size capable of</span>
<span class="doccomment">//! holding its elements.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Finally, if ever you&#39;re interested in what the actual capacity of the</span>
<span class="doccomment">//! collection is, most collections provide a `capacity` method to query this</span>
<span class="doccomment">//! information on demand. This can be useful for debugging purposes, or for</span>
<span class="doccomment">//! use with the `reserve` methods.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ## Iterators</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Iterators are a powerful and robust mechanism used throughout Rust&#39;s</span>
<span class="doccomment">//! standard libraries. Iterators provide a sequence of values in a generic,</span>
<span class="doccomment">//! safe, efficient and convenient way. The contents of an iterator are usually</span>
<span class="doccomment">//! *lazily* evaluated, so that only the values that are actually needed are</span>
<span class="doccomment">//! ever actually produced, and no allocation need be done to temporarily store</span>
<span class="doccomment">//! them. Iterators are primarily consumed using a `for` loop, although many</span>
<span class="doccomment">//! functions also take iterators where a collection or sequence of values is</span>
<span class="doccomment">//! desired.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! All of the standard collections provide several iterators for performing</span>
<span class="doccomment">//! bulk manipulation of their contents. The three primary iterators almost</span>
<span class="doccomment">//! every collection should provide are `iter`, `iter_mut`, and `into_iter`.</span>
<span class="doccomment">//! Some of these are not provided on collections where it would be unsound or</span>
<span class="doccomment">//! unreasonable to provide them.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! `iter` provides an iterator of immutable references to all the contents of a</span>
<span class="doccomment">//! collection in the most &quot;natural&quot; order. For sequence collections like [`Vec`],</span>
<span class="doccomment">//! this means the items will be yielded in increasing order of index starting</span>
<span class="doccomment">//! at 0. For ordered collections like [`BTreeMap`], this means that the items</span>
<span class="doccomment">//! will be yielded in sorted order. For unordered collections like [`HashMap`],</span>
<span class="doccomment">//! the items will be yielded in whatever order the internal representation made</span>
<span class="doccomment">//! most convenient. This is great for reading through all the contents of the</span>
<span class="doccomment">//! collection.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//! let vec = vec![1, 2, 3, 4];</span>
<span class="doccomment">//! for x in vec.iter() {</span>
<span class="doccomment">//!    println!(&quot;vec contained {}&quot;, x);</span>
<span class="doccomment">//! }</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! `iter_mut` provides an iterator of *mutable* references in the same order as</span>
<span class="doccomment">//! `iter`. This is great for mutating all the contents of the collection.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//! let mut vec = vec![1, 2, 3, 4];</span>
<span class="doccomment">//! for x in vec.iter_mut() {</span>
<span class="doccomment">//!    *x += 1;</span>
<span class="doccomment">//! }</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! `into_iter` transforms the actual collection into an iterator over its</span>
<span class="doccomment">//! contents by-value. This is great when the collection itself is no longer</span>
<span class="doccomment">//! needed, and the values are needed elsewhere. Using `extend` with `into_iter`</span>
<span class="doccomment">//! is the main way that contents of one collection are moved into another.</span>
<span class="doccomment">//! `extend` automatically calls `into_iter`, and takes any `T: `[`IntoIterator`].</span>
<span class="doccomment">//! Calling `collect` on an iterator itself is also a great way to convert one</span>
<span class="doccomment">//! collection into another. Both of these methods should internally use the</span>
<span class="doccomment">//! capacity management tools discussed in the previous section to do this as</span>
<span class="doccomment">//! efficiently as possible.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//! let mut vec1 = vec![1, 2, 3, 4];</span>
<span class="doccomment">//! let vec2 = vec![10, 20, 30, 40];</span>
<span class="doccomment">//! vec1.extend(vec2);</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//! use std::collections::VecDeque;</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! let vec = vec![1, 2, 3, 4];</span>
<span class="doccomment">//! let buf: VecDeque&lt;_&gt; = vec.into_iter().collect();</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Iterators also provide a series of *adapter* methods for performing common</span>
<span class="doccomment">//! threads to sequences. Among the adapters are functional favorites like `map`,</span>
<span class="doccomment">//! `fold`, `skip` and `take`. Of particular interest to collections is the</span>
<span class="doccomment">//! `rev` adapter, that reverses any iterator that supports this operation. Most</span>
<span class="doccomment">//! collections provide reversible iterators as the way to iterate over them in</span>
<span class="doccomment">//! reverse order.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//! let vec = vec![1, 2, 3, 4];</span>
<span class="doccomment">//! for x in vec.iter().rev() {</span>
<span class="doccomment">//!    println!(&quot;vec contained {}&quot;, x);</span>
<span class="doccomment">//! }</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Several other collection methods also return iterators to yield a sequence</span>
<span class="doccomment">//! of results but avoid allocating an entire collection to store the result in.</span>
<span class="doccomment">//! This provides maximum flexibility as `collect` or `extend` can be called to</span>
<span class="doccomment">//! &quot;pipe&quot; the sequence into any collection if desired. Otherwise, the sequence</span>
<span class="doccomment">//! can be looped over with a `for` loop. The iterator can also be discarded</span>
<span class="doccomment">//! after partial use, preventing the computation of the unused items.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ## Entries</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! The `entry` API is intended to provide an efficient mechanism for</span>
<span class="doccomment">//! manipulating the contents of a map conditionally on the presence of a key or</span>
<span class="doccomment">//! not. The primary motivating use case for this is to provide efficient</span>
<span class="doccomment">//! accumulator maps. For instance, if one wishes to maintain a count of the</span>
<span class="doccomment">//! number of times each key has been seen, they will have to perform some</span>
<span class="doccomment">//! conditional logic on whether this is the first time the key has been seen or</span>
<span class="doccomment">//! not. Normally, this would require a `find` followed by an `insert`,</span>
<span class="doccomment">//! effectively duplicating the search effort on each insertion.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! When a user calls `map.entry(&amp;key)`, the map will search for the key and</span>
<span class="doccomment">//! then yield a variant of the `Entry` enum.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! If a `Vacant(entry)` is yielded, then the key *was not* found. In this case</span>
<span class="doccomment">//! the only valid operation is to `insert` a value into the entry. When this is</span>
<span class="doccomment">//! done, the vacant entry is consumed and converted into a mutable reference to</span>
<span class="doccomment">//! the value that was inserted. This allows for further manipulation of the</span>
<span class="doccomment">//! value beyond the lifetime of the search itself. This is useful if complex</span>
<span class="doccomment">//! logic needs to be performed on the value regardless of whether the value was</span>
<span class="doccomment">//! just inserted.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! If an `Occupied(entry)` is yielded, then the key *was* found. In this case,</span>
<span class="doccomment">//! the user has several options: they can `get`, `insert` or `remove` the</span>
<span class="doccomment">//! value of the occupied entry. Additionally, they can convert the occupied</span>
<span class="doccomment">//! entry into a mutable reference to its value, providing symmetry to the</span>
<span class="doccomment">//! vacant `insert` case.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ### Examples</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! Here are the two primary ways in which `entry` is used. First, a simple</span>
<span class="doccomment">//! example where the logic performed on the values is trivial.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! #### Counting the number of times each character in a string occurs</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//! use std::collections::btree_map::BTreeMap;</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! let mut count = BTreeMap::new();</span>
<span class="doccomment">//! let message = &quot;she sells sea shells by the sea shore&quot;;</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! for c in message.chars() {</span>
<span class="doccomment">//!     *count.entry(c).or_insert(0) += 1;</span>
<span class="doccomment">//! }</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! assert_eq!(count.get(&amp;&#39;s&#39;), Some(&amp;8));</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! println!(&quot;Number of occurrences of each character&quot;);</span>
<span class="doccomment">//! for (char, count) in &amp;count {</span>
<span class="doccomment">//!     println!(&quot;{}: {}&quot;, char, count);</span>
<span class="doccomment">//! }</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! When the logic to be performed on the value is more complex, we may simply</span>
<span class="doccomment">//! use the `entry` API to ensure that the value is initialized and perform the</span>
<span class="doccomment">//! logic afterwards.</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! #### Tracking the inebriation of customers at a bar</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//! use std::collections::btree_map::BTreeMap;</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! // A client of the bar. They have a blood alcohol level.</span>
<span class="doccomment">//! struct Person { blood_alcohol: f32 }</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! // All the orders made to the bar, by client id.</span>
<span class="doccomment">//! let orders = vec![1,2,1,2,3,4,1,2,2,3,4,1,1,1];</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! // Our clients.</span>
<span class="doccomment">//! let mut blood_alcohol = BTreeMap::new();</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! for id in orders {</span>
<span class="doccomment">//!     // If this is the first time we&#39;ve seen this customer, initialize them</span>
<span class="doccomment">//!     // with no blood alcohol. Otherwise, just retrieve them.</span>
<span class="doccomment">//!     let person = blood_alcohol.entry(id).or_insert(Person { blood_alcohol: 0.0 });</span>
<span class="doccomment">//!</span>
<span class="doccomment">//!     // Reduce their blood alcohol level. It takes time to order and drink a beer!</span>
<span class="doccomment">//!     person.blood_alcohol *= 0.9;</span>
<span class="doccomment">//!</span>
<span class="doccomment">//!     // Check if they&#39;re sober enough to have another beer.</span>
<span class="doccomment">//!     if person.blood_alcohol &gt; 0.3 {</span>
<span class="doccomment">//!         // Too drunk... for now.</span>
<span class="doccomment">//!         println!(&quot;Sorry {}, I have to cut you off&quot;, id);</span>
<span class="doccomment">//!     } else {</span>
<span class="doccomment">//!         // Have another!</span>
<span class="doccomment">//!         person.blood_alcohol += 0.1;</span>
<span class="doccomment">//!     }</span>
<span class="doccomment">//! }</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! # Insert and complex keys</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! If we have a more complex key, calls to `insert` will</span>
<span class="doccomment">//! not update the value of the key. For example:</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//! use std::cmp::Ordering;</span>
<span class="doccomment">//! use std::collections::BTreeMap;</span>
<span class="doccomment">//! use std::hash::{Hash, Hasher};</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! #[derive(Debug)]</span>
<span class="doccomment">//! struct Foo {</span>
<span class="doccomment">//!     a: u32,</span>
<span class="doccomment">//!     b: &amp;&#39;static str,</span>
<span class="doccomment">//! }</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! // we will compare `Foo`s by their `a` value only.</span>
<span class="doccomment">//! impl PartialEq for Foo {</span>
<span class="doccomment">//!     fn eq(&amp;self, other: &amp;Self) -&gt; bool { self.a == other.a }</span>
<span class="doccomment">//! }</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! impl Eq for Foo {}</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! // we will hash `Foo`s by their `a` value only.</span>
<span class="doccomment">//! impl Hash for Foo {</span>
<span class="doccomment">//!     fn hash&lt;H: Hasher&gt;(&amp;self, h: &amp;mut H) { self.a.hash(h); }</span>
<span class="doccomment">//! }</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! impl PartialOrd for Foo {</span>
<span class="doccomment">//!     fn partial_cmp(&amp;self, other: &amp;Self) -&gt; Option&lt;Ordering&gt; { self.a.partial_cmp(&amp;other.a) }</span>
<span class="doccomment">//! }</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! impl Ord for Foo {</span>
<span class="doccomment">//!     fn cmp(&amp;self, other: &amp;Self) -&gt; Ordering { self.a.cmp(&amp;other.a) }</span>
<span class="doccomment">//! }</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! let mut map = BTreeMap::new();</span>
<span class="doccomment">//! map.insert(Foo { a: 1, b: &quot;baz&quot; }, 99);</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! // We already have a Foo with an a of 1, so this will be updating the value.</span>
<span class="doccomment">//! map.insert(Foo { a: 1, b: &quot;xyz&quot; }, 100);</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! // The value has been updated...</span>
<span class="doccomment">//! assert_eq!(map.values().next().unwrap(), &amp;100);</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! // ...but the key hasn&#39;t changed. b is still &quot;baz&quot;, not &quot;xyz&quot;.</span>
<span class="doccomment">//! assert_eq!(map.keys().next().unwrap().b, &quot;baz&quot;);</span>
<span class="doccomment">//! ```</span>
<span class="doccomment">//!</span>
<span class="doccomment">//! [`Vec`]: ../../std/vec/struct.Vec.html</span>
<span class="doccomment">//! [`HashMap`]: ../../std/collections/struct.HashMap.html</span>
<span class="doccomment">//! [`VecDeque`]: ../../std/collections/struct.VecDeque.html</span>
<span class="doccomment">//! [`LinkedList`]: ../../std/collections/struct.LinkedList.html</span>
<span class="doccomment">//! [`BTreeMap`]: ../../std/collections/struct.BTreeMap.html</span>
<span class="doccomment">//! [`HashSet`]: ../../std/collections/struct.HashSet.html</span>
<span class="doccomment">//! [`BTreeSet`]: ../../std/collections/struct.BTreeSet.html</span>
<span class="doccomment">//! [`BinaryHeap`]: ../../std/collections/struct.BinaryHeap.html</span>
<span class="doccomment">//! [`IntoIterator`]: ../../std/iter/trait.IntoIterator.html</span>

<span class="attribute">#<span class="op">!</span>[<span class="ident">stable</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;rust1&quot;</span>, <span class="ident">since</span> <span class="op">=</span> <span class="string">&quot;1.0.0&quot;</span>)]</span>

<span class="attribute">#[<span class="ident">stable</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;rust1&quot;</span>, <span class="ident">since</span> <span class="op">=</span> <span class="string">&quot;1.0.0&quot;</span>)]</span>
<span class="kw">pub</span> <span class="kw">use</span> <span class="ident">core_collections</span>::<span class="ident">Bound</span>;
<span class="attribute">#[<span class="ident">stable</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;rust1&quot;</span>, <span class="ident">since</span> <span class="op">=</span> <span class="string">&quot;1.0.0&quot;</span>)]</span>
<span class="kw">pub</span> <span class="kw">use</span> <span class="ident">core_collections</span>::{<span class="ident">BinaryHeap</span>, <span class="ident">BTreeMap</span>, <span class="ident">BTreeSet</span>};
<span class="attribute">#[<span class="ident">stable</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;rust1&quot;</span>, <span class="ident">since</span> <span class="op">=</span> <span class="string">&quot;1.0.0&quot;</span>)]</span>
<span class="kw">pub</span> <span class="kw">use</span> <span class="ident">core_collections</span>::{<span class="ident">LinkedList</span>, <span class="ident">VecDeque</span>};
<span class="attribute">#[<span class="ident">stable</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;rust1&quot;</span>, <span class="ident">since</span> <span class="op">=</span> <span class="string">&quot;1.0.0&quot;</span>)]</span>
<span class="kw">pub</span> <span class="kw">use</span> <span class="ident">core_collections</span>::{<span class="ident">binary_heap</span>, <span class="ident">btree_map</span>, <span class="ident">btree_set</span>};
<span class="attribute">#[<span class="ident">stable</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;rust1&quot;</span>, <span class="ident">since</span> <span class="op">=</span> <span class="string">&quot;1.0.0&quot;</span>)]</span>
<span class="kw">pub</span> <span class="kw">use</span> <span class="ident">core_collections</span>::{<span class="ident">linked_list</span>, <span class="ident">vec_deque</span>};

<span class="attribute">#[<span class="ident">stable</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;rust1&quot;</span>, <span class="ident">since</span> <span class="op">=</span> <span class="string">&quot;1.0.0&quot;</span>)]</span>
<span class="kw">pub</span> <span class="kw">use</span> <span class="self">self</span>::<span class="ident">hash_map</span>::<span class="ident">HashMap</span>;
<span class="attribute">#[<span class="ident">stable</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;rust1&quot;</span>, <span class="ident">since</span> <span class="op">=</span> <span class="string">&quot;1.0.0&quot;</span>)]</span>
<span class="kw">pub</span> <span class="kw">use</span> <span class="self">self</span>::<span class="ident">hash_set</span>::<span class="ident">HashSet</span>;

<span class="attribute">#[<span class="ident">stable</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;rust1&quot;</span>, <span class="ident">since</span> <span class="op">=</span> <span class="string">&quot;1.0.0&quot;</span>)]</span>
<span class="kw">pub</span> <span class="kw">use</span> <span class="ident">core_collections</span>::<span class="ident">range</span>;

<span class="kw">mod</span> <span class="ident">hash</span>;

<span class="attribute">#[<span class="ident">stable</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;rust1&quot;</span>, <span class="ident">since</span> <span class="op">=</span> <span class="string">&quot;1.0.0&quot;</span>)]</span>
<span class="kw">pub</span> <span class="kw">mod</span> <span class="ident">hash_map</span> {
    <span class="doccomment">//! A hash map implemented with linear probing and Robin Hood bucket stealing.</span>
    <span class="attribute">#[<span class="ident">stable</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;rust1&quot;</span>, <span class="ident">since</span> <span class="op">=</span> <span class="string">&quot;1.0.0&quot;</span>)]</span>
    <span class="kw">pub</span> <span class="kw">use</span> <span class="kw">super</span>::<span class="ident">hash</span>::<span class="ident">map</span>::<span class="kw-2">*</span>;
}

<span class="attribute">#[<span class="ident">stable</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;rust1&quot;</span>, <span class="ident">since</span> <span class="op">=</span> <span class="string">&quot;1.0.0&quot;</span>)]</span>
<span class="kw">pub</span> <span class="kw">mod</span> <span class="ident">hash_set</span> {
    <span class="doccomment">//! A hash set implemented as a `HashMap` where the value is `()`.</span>
    <span class="attribute">#[<span class="ident">stable</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;rust1&quot;</span>, <span class="ident">since</span> <span class="op">=</span> <span class="string">&quot;1.0.0&quot;</span>)]</span>
    <span class="kw">pub</span> <span class="kw">use</span> <span class="kw">super</span>::<span class="ident">hash</span>::<span class="ident">set</span>::<span class="kw-2">*</span>;
}
</pre>
</section>
    <section id='search' class="content hidden"></section>

    <section class="footer"></section>

    <aside id="help" class="hidden">
        <div>
            <h1 class="hidden">Help</h1>

            <div class="shortcuts">
                <h2>Keyboard Shortcuts</h2>

                <dl>
                    <dt>?</dt>
                    <dd>Show this help dialog</dd>
                    <dt>S</dt>
                    <dd>Focus the search field</dd>
                    <dt>&larrb;</dt>
                    <dd>Move up in search results</dd>
                    <dt>&rarrb;</dt>
                    <dd>Move down in search results</dd>
                    <dt>&#9166;</dt>
                    <dd>Go to active search result</dd>
                    <dt>+</dt>
                    <dd>Collapse/expand all sections</dd>
                </dl>
            </div>

            <div class="infos">
                <h2>Search Tricks</h2>

                <p>
                    Prefix searches with a type followed by a colon (e.g.
                    <code>fn:</code>) to restrict the search to a given type.
                </p>

                <p>
                    Accepted types are: <code>fn</code>, <code>mod</code>,
                    <code>struct</code>, <code>enum</code>,
                    <code>trait</code>, <code>type</code>, <code>macro</code>,
                    and <code>const</code>.
                </p>

                <p>
                    Search functions by type signature (e.g.
                    <code>vec -> usize</code> or <code>* -> vec</code>)
                </p>
            </div>
        </div>
    </aside>

    

    <script>
        window.rootPath = "../../../";
        window.currentCrate = "std";
    </script>
    <script src="../../../main.js"></script>
    <script defer src="../../../search-index.js"></script>
</body>
</html>