Sophie

Sophie

distrib > Mageia > 6 > x86_64 > media > core-updates > by-pkgid > d3c732bcddee997381ae7599db6439ca > files > 2019

boost-examples-1.60.0-6.1.mga6.noarch.rpm

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Root-finding using Boost.Multiprecision</title>
<link rel="stylesheet" href="../../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
<link rel="home" href="../../../index.html" title="Math Toolkit 2.3.0">
<link rel="up" href="../root_finding_examples.html" title="Examples of Root-Finding (with and without derivatives)">
<link rel="prev" href="5th_root_eg.html" title="Computing the Fifth Root">
<link rel="next" href="nth_root.html" title="Generalizing to Compute the nth root">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="5th_root_eg.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../root_finding_examples.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="nth_root.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="math_toolkit.roots.root_finding_examples.multiprecision_root"></a><a class="link" href="multiprecision_root.html" title="Root-finding using Boost.Multiprecision">Root-finding
        using Boost.Multiprecision</a>
</h4></div></div></div>
<p>
          The apocryphally astute reader might, by now, be asking "How do we
          know if this computes the 'right' answer?".
        </p>
<p>
          For most values, there is, sadly, no 'right' answer. This is because values
          can only rarely be <span class="emphasis"><em>exactly represented</em></span> by C++ floating-point
          types. What we do want is the 'best' representation - one that is the nearest
          <a href="http://en.wikipedia.org/wiki/Floating_point#Representable_numbers.2C_conversion_and_rounding" target="_top">representable</a>
          value. (For more about how numbers are represented see <a href="http://en.wikipedia.org/wiki/Floating_point" target="_top">Floating
          point</a>).
        </p>
<p>
          Of course, we might start with finding an external reference source like
          <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>, as above,
          but this is not always possible.
        </p>
<p>
          Another way to reassure is to compute 'reference' values at higher precision
          with which to compare the results of our iterative computations using built-in
          like <code class="computeroutput"><span class="keyword">double</span></code>. They should agree
          within the tolerance that was set.
        </p>
<p>
          The result of <code class="computeroutput"><span class="keyword">static_cast</span></code>ing
          to <code class="computeroutput"><span class="keyword">double</span></code> from a higher-precision
          type like <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code>
          is guaranteed to be the <span class="bold"><strong>nearest representable</strong></span>
          <code class="computeroutput"><span class="keyword">double</span></code> value.
        </p>
<p>
          For example, the cube root functions in our example for <code class="computeroutput"><span class="identifier">cbrt</span><span class="special">(</span><span class="number">28.</span><span class="special">)</span></code>
          compute
        </p>
<p>
          <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cbrt</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="number">28.</span><span class="special">)</span> <span class="special">=</span>
          <span class="number">3.0365889718756627</span></code>
        </p>
<p>
          WolframAlpha says <code class="computeroutput"><span class="number">3.036588971875662519420809578505669635581453977248111123242141</span><span class="special">...</span></code>
        </p>
<p>
          <code class="computeroutput"><span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="number">3.03658897187566251942080957850</span><span class="special">)</span>
          <span class="special">=</span> <span class="number">3.0365889718756627</span></code>
        </p>
<p>
          This example <code class="computeroutput"><span class="identifier">cbrt</span><span class="special">(</span><span class="number">28.</span><span class="special">)</span> <span class="special">=</span>
          <span class="number">3.0365889718756627</span></code>
        </p>
<div class="tip"><table border="0" summary="Tip">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Tip]" src="../../../../../../../doc/src/images/tip.png"></td>
<th align="left">Tip</th>
</tr>
<tr><td align="left" valign="top">
<p>
            To ensure that all potentially significant decimal digits are displayed
            use <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span></code> (or if not available on
            older platforms or compilers use <code class="computeroutput"><span class="number">2</span><span class="special">+</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">digits</span><span class="special">*</span><span class="number">3010</span><span class="special">/</span><span class="number">10000</span></code>).<br>
          </p>
<p>
            Ideally, values should agree to <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">-</span><span class="identifier">limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">digits10</span></code>
            decimal digits.
          </p>
<p>
            This also means that a 'reference' value to be <span class="bold"><strong>input</strong></span>
            or <code class="computeroutput"><span class="keyword">static_cast</span></code> should have
            at least <code class="computeroutput"><span class="identifier">max_digits10</span></code>
            decimal digits (17 for 64-bit <code class="computeroutput"><span class="keyword">double</span></code>).
          </p>
</td></tr>
</table></div>
<p>
          If we wish to compute <span class="bold"><strong>higher-precision values</strong></span>
          then, on some platforms, we may be able to use <code class="computeroutput"><span class="keyword">long</span>
          <span class="keyword">double</span></code> with a higher precision than
          <code class="computeroutput"><span class="keyword">double</span></code> to compare with the
          very common <code class="computeroutput"><span class="keyword">double</span></code> and/or
          a more efficient built-in quad floating-point type like <code class="computeroutput"><span class="identifier">__float128</span></code>.
        </p>
<p>
          Almost all platforms can easily use <a href="../../../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>,
          for example, <a href="../../../../../../../libs/multiprecision/doc/html/boost_multiprecision/tut/floats/cpp_dec_float.html" target="_top">cpp_dec_float</a>
          or a binary type <a href="../../../../../../../libs/multiprecision/doc/html/boost_multiprecision/tut/floats/cpp_bin_float.html" target="_top">cpp_bin_float</a>
          types, to compute values at very much higher precision.
        </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
            With multiprecision types, it is debatable whether to use the type <code class="computeroutput"><span class="identifier">T</span></code> for computing the initial guesses.
            Type <code class="computeroutput"><span class="keyword">double</span></code> is like to be
            accurate enough for the method used in these examples. This would limit
            the exponent range of possible values to that of <code class="computeroutput"><span class="keyword">double</span></code>.
            There is also the cost of conversion to and from type <code class="computeroutput"><span class="identifier">T</span></code>
            to consider. In these examples, <code class="computeroutput"><span class="keyword">double</span></code>
            is used via <code class="computeroutput"><span class="keyword">typedef</span> <span class="keyword">double</span>
            <span class="identifier">guess_type</span></code>.
          </p></td></tr>
</table></div>
<p>
          Since the functors and functions used above are templated on the value
          type, we can very simply use them with any of the <a href="../../../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
          types. As a reminder, here's our toy cube root function using 2 derivatives
          and C++11 lambda functions to find the root:
        </p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">cbrt_2deriv_lambda</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">x</span><span class="special">)</span>
<span class="special">{</span>
   <span class="comment">// return cube root of x using 1st and 2nd derivatives and Halley.</span>
   <span class="comment">//using namespace std;  // Help ADL of std functions.</span>
   <span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">;</span>
   <span class="keyword">int</span> <span class="identifier">exponent</span><span class="special">;</span>
   <span class="identifier">frexp</span><span class="special">(</span><span class="identifier">x</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">exponent</span><span class="special">);</span>                                <span class="comment">// Get exponent of z (ignore mantissa).</span>
   <span class="identifier">T</span> <span class="identifier">guess</span> <span class="special">=</span> <span class="identifier">ldexp</span><span class="special">(</span><span class="number">1.</span><span class="special">,</span> <span class="identifier">exponent</span> <span class="special">/</span> <span class="number">3</span><span class="special">);</span>                    <span class="comment">// Rough guess is to divide the exponent by three.</span>
   <span class="identifier">T</span> <span class="identifier">min</span> <span class="special">=</span> <span class="identifier">ldexp</span><span class="special">(</span><span class="number">0.5</span><span class="special">,</span> <span class="identifier">exponent</span> <span class="special">/</span> <span class="number">3</span><span class="special">);</span>                     <span class="comment">// Minimum possible value is half our guess.</span>
   <span class="identifier">T</span> <span class="identifier">max</span> <span class="special">=</span> <span class="identifier">ldexp</span><span class="special">(</span><span class="number">2.</span><span class="special">,</span> <span class="identifier">exponent</span> <span class="special">/</span> <span class="number">3</span><span class="special">);</span>                      <span class="comment">// Maximum possible value is twice our guess.</span>
   <span class="keyword">const</span> <span class="keyword">int</span> <span class="identifier">digits</span> <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">digits</span><span class="special">;</span>  <span class="comment">// Maximum possible binary digits accuracy for type T.</span>
   <span class="comment">// digits used to control how accurate to try to make the result.</span>
   <span class="keyword">int</span> <span class="identifier">get_digits</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;(</span><span class="identifier">digits</span> <span class="special">*</span> <span class="number">0.4</span><span class="special">);</span>    <span class="comment">// Accuracy triples with each step, so stop when just</span>
   <span class="comment">// over one third of the digits are correct.</span>
   <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span> <span class="identifier">maxit</span> <span class="special">=</span> <span class="number">20</span><span class="special">;</span>
   <span class="identifier">T</span> <span class="identifier">result</span> <span class="special">=</span> <span class="identifier">halley_iterate</span><span class="special">(</span>
      <span class="comment">// lambda function:</span>
      <span class="special">[</span><span class="identifier">x</span><span class="special">](</span><span class="keyword">const</span> <span class="identifier">T</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">){</span> <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">make_tuple</span><span class="special">(</span><span class="identifier">g</span> <span class="special">*</span> <span class="identifier">g</span> <span class="special">*</span> <span class="identifier">g</span> <span class="special">-</span> <span class="identifier">x</span><span class="special">,</span> <span class="number">3</span> <span class="special">*</span> <span class="identifier">g</span> <span class="special">*</span> <span class="identifier">g</span><span class="special">,</span> <span class="number">6</span> <span class="special">*</span> <span class="identifier">g</span><span class="special">);</span> <span class="special">},</span>
      <span class="identifier">guess</span><span class="special">,</span> <span class="identifier">min</span><span class="special">,</span> <span class="identifier">max</span><span class="special">,</span> <span class="identifier">get_digits</span><span class="special">,</span> <span class="identifier">maxit</span><span class="special">);</span>
   <span class="keyword">return</span> <span class="identifier">result</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
          Some examples below are 50 decimal digit decimal and binary types (and
          on some platforms a much faster <code class="computeroutput"><span class="identifier">float128</span></code>
          or <code class="computeroutput"><span class="identifier">quad_float</span></code> type ) that
          we can use with these includes:
        </p>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">multiprecision</span><span class="special">/</span><span class="identifier">cpp_bin_float</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span> <span class="comment">// For cpp_bin_float_50.</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">multiprecision</span><span class="special">/</span><span class="identifier">cpp_dec_float</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span> <span class="comment">// For cpp_dec_float_50.</span>
<span class="preprocessor">#ifndef</span> <span class="identifier">_MSC_VER</span>  <span class="comment">// float128 is not yet supported by Microsoft compiler at 2013.</span>
<span class="preprocessor">#  include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">multiprecision</span><span class="special">/</span><span class="identifier">float128</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span> <span class="comment">// Requires libquadmath.</span>
<span class="preprocessor">#endif</span>
</pre>
<p>
          Some using statements simplify their use:
        </p>
<pre class="programlisting">  <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">multiprecision</span><span class="special">::</span><span class="identifier">cpp_dec_float_50</span><span class="special">;</span> <span class="comment">// decimal.</span>
  <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">multiprecision</span><span class="special">::</span><span class="identifier">cpp_bin_float_50</span><span class="special">;</span> <span class="comment">// binary.</span>
<span class="preprocessor">#ifndef</span> <span class="identifier">_MSC_VER</span>  <span class="comment">// Not supported by Microsoft compiler.</span>
  <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">multiprecision</span><span class="special">::</span><span class="identifier">float128</span><span class="special">;</span>
<span class="preprocessor">#endif</span>
</pre>
<p>
          They can be used thus:
        </p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">cpp_dec_float_50</span><span class="special">&gt;::</span><span class="identifier">digits10</span><span class="special">);</span>

<span class="identifier">cpp_dec_float_50</span> <span class="identifier">two</span> <span class="special">=</span> <span class="number">2</span><span class="special">;</span> <span class="comment">// </span>
<span class="identifier">cpp_dec_float_50</span>  <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">cbrt_2deriv</span><span class="special">(</span><span class="identifier">two</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"cbrt("</span> <span class="special">&lt;&lt;</span> <span class="identifier">two</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">cbrt_2deriv</span><span class="special">(</span><span class="number">2.</span><span class="special">);</span> <span class="comment">// Passing a double, so ADL will compute a double precision result.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"cbrt("</span> <span class="special">&lt;&lt;</span> <span class="identifier">two</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// cbrt(2) = 1.2599210498948731906665443602832965552806854248047 'wrong' from digits 17 onwards!</span>
<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">cbrt_2deriv</span><span class="special">(</span><span class="keyword">static_cast</span><span class="special">&lt;</span><span class="identifier">cpp_dec_float_50</span><span class="special">&gt;(</span><span class="number">2.</span><span class="special">));</span> <span class="comment">// Passing a cpp_dec_float_50, </span>
<span class="comment">// so will compute a cpp_dec_float_50 precision result.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"cbrt("</span> <span class="special">&lt;&lt;</span> <span class="identifier">two</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">cbrt_2deriv</span><span class="special">&lt;</span><span class="identifier">cpp_dec_float_50</span><span class="special">&gt;(</span><span class="number">2.</span><span class="special">);</span> <span class="comment">// Explictly a cpp_dec_float_50, so will compute a cpp_dec_float_50 precision result.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"cbrt("</span> <span class="special">&lt;&lt;</span> <span class="identifier">two</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// cpp_dec_float_50 1.2599210498948731647672106072782283505702514647015</span>
</pre>
<p>
          A reference value computed by <a href="http://www.wolframalpha.com/" target="_top">Wolfram
          Alpha</a> is
        </p>
<pre class="programlisting"><span class="identifier">N</span><span class="special">[</span><span class="number">2</span><span class="special">^(</span><span class="number">1</span><span class="special">/</span><span class="number">3</span><span class="special">),</span> <span class="number">50</span><span class="special">]</span>  <span class="number">1.2599210498948731647672106072782283505702514647015</span>
</pre>
<p>
          which agrees exactly.
        </p>
<p>
          To <span class="bold"><strong>show</strong></span> values to their full precision,
          it is necessary to adjust the <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span></code>
          <code class="computeroutput"><span class="identifier">precision</span></code> to suit the type,
          for example:
        </p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">show_cube_root</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">value</span><span class="special">)</span>
<span class="special">{</span> <span class="comment">// Demonstrate by printing the root using all definitely significant digits.</span>
  <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">digits10</span><span class="special">);</span>
  <span class="identifier">T</span> <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">cbrt_2deriv</span><span class="special">(</span><span class="identifier">value</span><span class="special">);</span>
  <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"value = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">value</span> <span class="special">&lt;&lt;</span> <span class="string">", cube root ="</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
  <span class="keyword">return</span> <span class="identifier">r</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<pre class="programlisting"><span class="identifier">show_cube_root</span><span class="special">(</span><span class="number">2.</span><span class="special">);</span>
<span class="identifier">show_cube_root</span><span class="special">(</span><span class="number">2.L</span><span class="special">);</span>
<span class="identifier">show_cube_root</span><span class="special">(</span><span class="identifier">two</span><span class="special">);</span>
</pre>
<p>
          which outputs:
        </p>
<pre class="programlisting">cbrt(2) = 1.2599210498948731647672106072782283505702514647015

value = 2, cube root =1.25992104989487
value = 2, cube root =1.25992104989487
value = 2, cube root =1.2599210498948731647672106072782283505702514647015
</pre>
<div class="tip"><table border="0" summary="Tip">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Tip]" src="../../../../../../../doc/src/images/tip.png"></td>
<th align="left">Tip</th>
</tr>
<tr><td align="left" valign="top">
<p>
            Be <span class="bold"><strong>very careful</strong></span> about the floating-point
            type <code class="computeroutput"><span class="identifier">T</span></code> that is passed
            to the root-finding function. Carelessly passing a integer by writing
            <code class="computeroutput"><span class="identifier">cpp_dec_float_50</span> <span class="identifier">r</span>
            <span class="special">=</span> <span class="identifier">cbrt_2deriv</span><span class="special">(</span><span class="number">2</span><span class="special">);</span></code>
            or <code class="computeroutput"><span class="identifier">show_cube_root</span><span class="special">(</span><span class="number">2</span><span class="special">);</span></code> will
            provoke many warnings and compile errors.
          </p>
<p>
            Even <code class="computeroutput"><span class="identifier">show_cube_root</span><span class="special">(</span><span class="number">2.F</span><span class="special">);</span></code> will
            produce warnings because <code class="computeroutput"><span class="keyword">typedef</span>
            <span class="keyword">double</span> <span class="identifier">guess_type</span></code>
            defines the type used to compute the guess and bracket values as <code class="computeroutput"><span class="keyword">double</span></code>.
          </p>
<p>
            Even more treacherous is passing a <code class="computeroutput"><span class="keyword">double</span></code>
            as in <code class="computeroutput"><span class="identifier">cpp_dec_float_50</span> <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">cbrt_2deriv</span><span class="special">(</span><span class="number">2.</span><span class="special">);</span></code> which
            silently gives the 'wrong' result, computing a <code class="computeroutput"><span class="keyword">double</span></code>
            result and <span class="bold"><strong>then</strong></span> converting to <code class="computeroutput"><span class="identifier">cpp_dec_float_50</span></code>! All digits beyond
            <code class="computeroutput"><span class="identifier">max_digits10</span></code> will be
            incorrect. Making the <code class="computeroutput"><span class="identifier">cbrt</span></code>
            type explicit with <code class="computeroutput"><span class="identifier">cbrt_2deriv</span><span class="special">&lt;</span><span class="identifier">cpp_dec_float_50</span><span class="special">&gt;(</span><span class="number">2.</span><span class="special">);</span></code> will give you the desired 50 decimal
            digit precision result.
          </p>
</td></tr>
</table></div>
<p>
          Full code of this example is at <a href="../../../../../example/root_finding_multiprecision_example.cpp" target="_top">root_finding_multiprecision_example.cpp</a>.
        </p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014 Nikhar Agrawal,
      Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
      Holin, Bruno Lalande, John Maddock, Johan R&#229;de, Gautam Sewani, Benjamin Sobotta,
      Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="5th_root_eg.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../root_finding_examples.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="nth_root.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>