Sophie

Sophie

distrib > Mageia > 7 > armv7hl > media > core-updates > by-pkgid > 5fea23694c765462b86d6ddf74461eab > files > 37

postgresql9.6-docs-9.6.22-1.mga7.noarch.rpm

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<HTML
><HEAD
><TITLE
>Authentication Methods</TITLE
><META
NAME="GENERATOR"
CONTENT="Modular DocBook HTML Stylesheet Version 1.79"><LINK
REV="MADE"
HREF="mailto:pgsql-docs@postgresql.org"><LINK
REL="HOME"
TITLE="PostgreSQL 9.6.22 Documentation"
HREF="index.html"><LINK
REL="UP"
TITLE="Client Authentication"
HREF="client-authentication.html"><LINK
REL="PREVIOUS"
TITLE="User Name Maps"
HREF="auth-username-maps.html"><LINK
REL="NEXT"
TITLE="Authentication Problems"
HREF="client-authentication-problems.html"><LINK
REL="STYLESHEET"
TYPE="text/css"
HREF="stylesheet.css"><META
HTTP-EQUIV="Content-Type"
CONTENT="text/html; charset=ISO-8859-1"><META
NAME="creation"
CONTENT="2021-05-18T09:16:10"></HEAD
><BODY
CLASS="SECT1"
><DIV
CLASS="NAVHEADER"
><TABLE
SUMMARY="Header navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TH
COLSPAN="4"
ALIGN="center"
VALIGN="bottom"
><A
HREF="index.html"
>PostgreSQL 9.6.22 Documentation</A
></TH
></TR
><TR
><TD
WIDTH="10%"
ALIGN="left"
VALIGN="top"
><A
TITLE="User Name Maps"
HREF="auth-username-maps.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="10%"
ALIGN="left"
VALIGN="top"
><A
HREF="client-authentication.html"
ACCESSKEY="U"
>Up</A
></TD
><TD
WIDTH="60%"
ALIGN="center"
VALIGN="bottom"
>Chapter 20. Client Authentication</TD
><TD
WIDTH="20%"
ALIGN="right"
VALIGN="top"
><A
TITLE="Authentication Problems"
HREF="client-authentication-problems.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
></TABLE
><HR
ALIGN="LEFT"
WIDTH="100%"></DIV
><DIV
CLASS="SECT1"
><H1
CLASS="SECT1"
><A
NAME="AUTH-METHODS"
>20.3. Authentication Methods</A
></H1
><P
>   The following subsections describe the authentication methods in more detail.
  </P
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="AUTH-TRUST"
>20.3.1. Trust Authentication</A
></H2
><P
>    When <TT
CLASS="LITERAL"
>trust</TT
> authentication is specified,
    <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> assumes that anyone who can
    connect to the server is authorized to access the database with
    whatever database user name they specify (even superuser names).
    Of course, restrictions made in the <TT
CLASS="LITERAL"
>database</TT
> and
    <TT
CLASS="LITERAL"
>user</TT
> columns still apply.
    This method should only be used when there is adequate
    operating-system-level protection on connections to the server.
   </P
><P
>    <TT
CLASS="LITERAL"
>trust</TT
> authentication is appropriate and very
    convenient for local connections on a single-user workstation.  It
    is usually <SPAN
CLASS="emphasis"
><I
CLASS="EMPHASIS"
>not</I
></SPAN
> appropriate by itself on a multiuser
    machine.  However, you might be able to use <TT
CLASS="LITERAL"
>trust</TT
> even
    on a multiuser machine, if you restrict access to the server's
    Unix-domain socket file using file-system permissions.  To do this, set the
    <TT
CLASS="VARNAME"
>unix_socket_permissions</TT
> (and possibly
    <TT
CLASS="VARNAME"
>unix_socket_group</TT
>) configuration parameters as
    described in <A
HREF="runtime-config-connection.html"
>Section 19.3</A
>.  Or you
    could set the <TT
CLASS="VARNAME"
>unix_socket_directories</TT
>
    configuration parameter to place the socket file in a suitably
    restricted directory.
   </P
><P
>    Setting file-system permissions only helps for Unix-socket connections.
    Local TCP/IP connections are not restricted by file-system permissions.
    Therefore, if you want to use file-system permissions for local security,
    remove the <TT
CLASS="LITERAL"
>host ... 127.0.0.1 ...</TT
> line from
    <TT
CLASS="FILENAME"
>pg_hba.conf</TT
>, or change it to a
    non-<TT
CLASS="LITERAL"
>trust</TT
> authentication method.
   </P
><P
>    <TT
CLASS="LITERAL"
>trust</TT
> authentication is only suitable for TCP/IP connections
    if you trust every user on every machine that is allowed to connect
    to the server by the <TT
CLASS="FILENAME"
>pg_hba.conf</TT
> lines that specify
    <TT
CLASS="LITERAL"
>trust</TT
>.  It is seldom reasonable to use <TT
CLASS="LITERAL"
>trust</TT
>
    for any TCP/IP connections other than those from <SPAN
CLASS="SYSTEMITEM"
>localhost</SPAN
> (127.0.0.1).
   </P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="AUTH-PASSWORD"
>20.3.2. Password Authentication</A
></H2
><P
>    The password-based authentication methods are <TT
CLASS="LITERAL"
>md5</TT
>
    and <TT
CLASS="LITERAL"
>password</TT
>. These methods operate
    similarly except for the way that the password is sent across the
    connection, namely MD5-hashed and clear-text respectively.
   </P
><P
>    If you are at all concerned about password
    <SPAN
CLASS="QUOTE"
>"sniffing"</SPAN
> attacks then <TT
CLASS="LITERAL"
>md5</TT
> is preferred.
    Plain <TT
CLASS="LITERAL"
>password</TT
> should always be avoided if possible.
    However, <TT
CLASS="LITERAL"
>md5</TT
> cannot be used with the <A
HREF="runtime-config-connection.html#GUC-DB-USER-NAMESPACE"
>db_user_namespace</A
> feature.  If the connection is
    protected by SSL encryption then <TT
CLASS="LITERAL"
>password</TT
> can be used
    safely (though SSL certificate authentication might be a better
    choice if one is depending on using SSL).
   </P
><P
>    <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> database passwords are
    separate from operating system user passwords. The password for
    each database user is stored in the <TT
CLASS="LITERAL"
>pg_authid</TT
> system
    catalog. Passwords can be managed with the SQL commands
    <A
HREF="sql-createuser.html"
>CREATE USER</A
> and
    <A
HREF="sql-alterrole.html"
>ALTER ROLE</A
>,
    e.g., <KBD
CLASS="USERINPUT"
>CREATE USER foo WITH PASSWORD 'secret'</KBD
>.
    If no password has been set up for a user, the stored password
    is null and password authentication will always fail for that user.
   </P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="GSSAPI-AUTH"
>20.3.3. GSSAPI Authentication</A
></H2
><P
>    <SPAN
CLASS="PRODUCTNAME"
>GSSAPI</SPAN
> is an industry-standard protocol
    for secure authentication defined in RFC 2743.
    <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> supports
    <SPAN
CLASS="PRODUCTNAME"
>GSSAPI</SPAN
> with <SPAN
CLASS="PRODUCTNAME"
>Kerberos</SPAN
>
    authentication according to RFC 1964. <SPAN
CLASS="PRODUCTNAME"
>GSSAPI</SPAN
>
    provides automatic authentication (single sign-on) for systems
    that support it. The authentication itself is secure, but the
    data sent over the database connection will be sent unencrypted unless
    <ACRONYM
CLASS="ACRONYM"
>SSL</ACRONYM
> is used.
   </P
><P
>    GSSAPI support has to be enabled when <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> is built;
    see <A
HREF="installation.html"
>Chapter 16</A
> for more information.
   </P
><P
>    When <SPAN
CLASS="PRODUCTNAME"
>GSSAPI</SPAN
> uses
    <SPAN
CLASS="PRODUCTNAME"
>Kerberos</SPAN
>, it uses a standard principal
    in the format
    <TT
CLASS="LITERAL"
><TT
CLASS="REPLACEABLE"
><I
>servicename</I
></TT
>/<TT
CLASS="REPLACEABLE"
><I
>hostname</I
></TT
>@<TT
CLASS="REPLACEABLE"
><I
>realm</I
></TT
></TT
>.
    The PostgreSQL server will accept any principal that is included in the keytab used by
    the server, but care needs to be taken to specify the correct principal details when
    making the connection from the client using the <TT
CLASS="LITERAL"
>krbsrvname</TT
> connection parameter. (See
    also <A
HREF="libpq-connect.html#LIBPQ-PARAMKEYWORDS"
>Section 32.1.2</A
>.) The installation default can be
    changed from the default <TT
CLASS="LITERAL"
>postgres</TT
> at build time using
    <TT
CLASS="LITERAL"
>./configure --with-krb-srvnam=</TT
><TT
CLASS="REPLACEABLE"
><I
>whatever</I
></TT
>.
    In most environments,
    this parameter never needs to be changed.
    Some Kerberos implementations might require a different service name,
    such as Microsoft Active Directory which requires the service name
    to be in upper case (<TT
CLASS="LITERAL"
>POSTGRES</TT
>).
   </P
><P
>    <TT
CLASS="REPLACEABLE"
><I
>hostname</I
></TT
> is the fully qualified host name of the
    server machine. The service principal's realm is the preferred realm
    of the server machine.
   </P
><P
>    Client principals can be mapped to different <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
>
    database user names with <TT
CLASS="FILENAME"
>pg_ident.conf</TT
>.  For example,
    <TT
CLASS="LITERAL"
>pgusername@realm</TT
> could be mapped to just <TT
CLASS="LITERAL"
>pgusername</TT
>.
    Alternatively, you can use the full <TT
CLASS="LITERAL"
>username@realm</TT
> principal as
    the role name in <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> without any mapping.
   </P
><P
>    <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> also supports a parameter to strip the realm from
    the principal.  This method is supported for backwards compatibility and is
    strongly discouraged as it is then impossible to distinguish different users
    with the same user name but coming from different realms.  To enable this,
    set <TT
CLASS="LITERAL"
>include_realm</TT
> to 0.  For simple single-realm
    installations, doing that combined with setting the
    <TT
CLASS="LITERAL"
>krb_realm</TT
> parameter (which checks that the principal's realm
    matches exactly what is in the <TT
CLASS="LITERAL"
>krb_realm</TT
> parameter)
    is still secure; but this is a
    less capable approach compared to specifying an explicit mapping in
    <TT
CLASS="FILENAME"
>pg_ident.conf</TT
>.
   </P
><P
>    Make sure that your server keytab file is readable (and preferably
    only readable, not writable) by the <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
>
    server account.  (See also <A
HREF="postgres-user.html"
>Section 18.1</A
>.) The location
    of the key file is specified by the <A
HREF="runtime-config-connection.html#GUC-KRB-SERVER-KEYFILE"
>krb_server_keyfile</A
> configuration
    parameter. The default is
    <TT
CLASS="FILENAME"
>/usr/local/pgsql/etc/krb5.keytab</TT
> (or whatever
    directory was specified as <TT
CLASS="VARNAME"
>sysconfdir</TT
> at build time).
    For security reasons, it is recommended to use a separate keytab
    just for the <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> server rather
    than opening up permissions on the system keytab file.
   </P
><P
>    The keytab file is generated by the Kerberos software; see the
    Kerberos documentation for details. The following example is
   for MIT-compatible Kerberos 5 implementations:
</P><PRE
CLASS="SCREEN"
><SAMP
CLASS="PROMPT"
>kadmin% </SAMP
><KBD
CLASS="USERINPUT"
>ank -randkey postgres/server.my.domain.org</KBD
>
<SAMP
CLASS="PROMPT"
>kadmin% </SAMP
><KBD
CLASS="USERINPUT"
>ktadd -k krb5.keytab postgres/server.my.domain.org</KBD
></PRE
><P>
   </P
><P
>    When connecting to the database make sure you have a ticket for a
    principal matching the requested database user name. For example, for
    database user name <TT
CLASS="LITERAL"
>fred</TT
>, principal
    <TT
CLASS="LITERAL"
>fred@EXAMPLE.COM</TT
> would be able to connect. To also allow
    principal <TT
CLASS="LITERAL"
>fred/users.example.com@EXAMPLE.COM</TT
>, use a user name
    map, as described in <A
HREF="auth-username-maps.html"
>Section 20.2</A
>.
   </P
><P
>    The following configuration options are supported for <SPAN
CLASS="PRODUCTNAME"
>GSSAPI</SPAN
>:
    <P
></P
></P><DIV
CLASS="VARIABLELIST"
><DL
><DT
><TT
CLASS="LITERAL"
>include_realm</TT
></DT
><DD
><P
>        If set to 0, the realm name from the authenticated user principal is
        stripped off before being passed through the user name mapping
        (<A
HREF="auth-username-maps.html"
>Section 20.2</A
>). This is discouraged and is
        primarily available for backwards compatibility, as it is not secure
        in multi-realm environments unless <TT
CLASS="LITERAL"
>krb_realm</TT
> is
        also used.  It is recommended to
        leave <TT
CLASS="LITERAL"
>include_realm</TT
> set to the default (1) and to
        provide an explicit mapping in <TT
CLASS="FILENAME"
>pg_ident.conf</TT
> to convert
        principal names to <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> user names.
       </P
></DD
><DT
><TT
CLASS="LITERAL"
>map</TT
></DT
><DD
><P
>        Allows for mapping between system and database user names. See
        <A
HREF="auth-username-maps.html"
>Section 20.2</A
> for details.  For a GSSAPI/Kerberos
        principal, such as <TT
CLASS="LITERAL"
>username@EXAMPLE.COM</TT
> (or, less
        commonly, <TT
CLASS="LITERAL"
>username/hostbased@EXAMPLE.COM</TT
>), the
        user name used for mapping is
        <TT
CLASS="LITERAL"
>username@EXAMPLE.COM</TT
> (or
        <TT
CLASS="LITERAL"
>username/hostbased@EXAMPLE.COM</TT
>, respectively),
        unless <TT
CLASS="LITERAL"
>include_realm</TT
> has been set to 0, in which case
        <TT
CLASS="LITERAL"
>username</TT
> (or <TT
CLASS="LITERAL"
>username/hostbased</TT
>)
        is what is seen as the system user name when mapping.
       </P
></DD
><DT
><TT
CLASS="LITERAL"
>krb_realm</TT
></DT
><DD
><P
>        Sets the realm to match user principal names against. If this parameter
        is set, only users of that realm will be accepted.  If it is not set,
        users of any realm can connect, subject to whatever user name mapping
        is done.
       </P
></DD
></DL
></DIV
><P>
   </P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="SSPI-AUTH"
>20.3.4. SSPI Authentication</A
></H2
><P
>    <SPAN
CLASS="PRODUCTNAME"
>SSPI</SPAN
> is a <SPAN
CLASS="PRODUCTNAME"
>Windows</SPAN
>
    technology for secure authentication with single sign-on.
    <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> will use SSPI in
    <TT
CLASS="LITERAL"
>negotiate</TT
> mode, which will use
    <SPAN
CLASS="PRODUCTNAME"
>Kerberos</SPAN
> when possible and automatically
    fall back to <SPAN
CLASS="PRODUCTNAME"
>NTLM</SPAN
> in other cases.
    <SPAN
CLASS="PRODUCTNAME"
>SSPI</SPAN
> authentication only works when both
    server and client are running <SPAN
CLASS="PRODUCTNAME"
>Windows</SPAN
>,
    or, on non-Windows platforms, when <SPAN
CLASS="PRODUCTNAME"
>GSSAPI</SPAN
>
    is available.
   </P
><P
>    When using <SPAN
CLASS="PRODUCTNAME"
>Kerberos</SPAN
> authentication,
    <SPAN
CLASS="PRODUCTNAME"
>SSPI</SPAN
> works the same way
    <SPAN
CLASS="PRODUCTNAME"
>GSSAPI</SPAN
> does; see <A
HREF="auth-methods.html#GSSAPI-AUTH"
>Section 20.3.3</A
>
    for details.
   </P
><P
>    The following configuration options are supported for <SPAN
CLASS="PRODUCTNAME"
>SSPI</SPAN
>:
    <P
></P
></P><DIV
CLASS="VARIABLELIST"
><DL
><DT
><TT
CLASS="LITERAL"
>include_realm</TT
></DT
><DD
><P
>        If set to 0, the realm name from the authenticated user principal is
        stripped off before being passed through the user name mapping
        (<A
HREF="auth-username-maps.html"
>Section 20.2</A
>). This is discouraged and is
        primarily available for backwards compatibility, as it is not secure
        in multi-realm environments unless <TT
CLASS="LITERAL"
>krb_realm</TT
> is
        also used.  It is recommended to
        leave <TT
CLASS="LITERAL"
>include_realm</TT
> set to the default (1) and to
        provide an explicit mapping in <TT
CLASS="FILENAME"
>pg_ident.conf</TT
> to convert
        principal names to <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> user names.
       </P
></DD
><DT
><TT
CLASS="LITERAL"
>compat_realm</TT
></DT
><DD
><P
>        If set to 1, the domain's SAM-compatible name (also known as the
        NetBIOS name) is used for the <TT
CLASS="LITERAL"
>include_realm</TT
>
        option. This is the default. If set to 0, the true realm name from
        the Kerberos user principal name is used.
       </P
><P
>        Do not disable this option unless your server runs under a domain
        account (this includes virtual service accounts on a domain member
        system) and all clients authenticating through SSPI are also using
        domain accounts, or authentication will fail.
       </P
></DD
><DT
><TT
CLASS="LITERAL"
>upn_username</TT
></DT
><DD
><P
>        If this option is enabled along with <TT
CLASS="LITERAL"
>compat_realm</TT
>,
        the user name from the Kerberos UPN is used for authentication. If
        it is disabled (the default), the SAM-compatible user name is used.
        By default, these two names are identical for new user accounts.
       </P
><P
>        Note that <SPAN
CLASS="APPLICATION"
>libpq</SPAN
> uses the SAM-compatible name if no
        explicit user name is specified. If you use
        <SPAN
CLASS="APPLICATION"
>libpq</SPAN
> or a driver based on it, you should
        leave this option disabled or explicitly specify user name in the
        connection string.
       </P
></DD
><DT
><TT
CLASS="LITERAL"
>map</TT
></DT
><DD
><P
>        Allows for mapping between system and database user names. See
        <A
HREF="auth-username-maps.html"
>Section 20.2</A
> for details.  For a SSPI/Kerberos
        principal, such as <TT
CLASS="LITERAL"
>username@EXAMPLE.COM</TT
> (or, less
        commonly, <TT
CLASS="LITERAL"
>username/hostbased@EXAMPLE.COM</TT
>), the
        user name used for mapping is
        <TT
CLASS="LITERAL"
>username@EXAMPLE.COM</TT
> (or
        <TT
CLASS="LITERAL"
>username/hostbased@EXAMPLE.COM</TT
>, respectively),
        unless <TT
CLASS="LITERAL"
>include_realm</TT
> has been set to 0, in which case
        <TT
CLASS="LITERAL"
>username</TT
> (or <TT
CLASS="LITERAL"
>username/hostbased</TT
>)
        is what is seen as the system user name when mapping.
       </P
></DD
><DT
><TT
CLASS="LITERAL"
>krb_realm</TT
></DT
><DD
><P
>        Sets the realm to match user principal names against. If this parameter
        is set, only users of that realm will be accepted.  If it is not set,
        users of any realm can connect, subject to whatever user name mapping
        is done.
       </P
></DD
></DL
></DIV
><P>
   </P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="AUTH-IDENT"
>20.3.5. Ident Authentication</A
></H2
><P
>    The ident authentication method works by obtaining the client's
    operating system user name from an ident server and using it as
    the allowed database user name (with an optional user name mapping).
    This is only supported on TCP/IP connections.
   </P
><DIV
CLASS="NOTE"
><BLOCKQUOTE
CLASS="NOTE"
><P
><B
>Note: </B
>     When ident is specified for a local (non-TCP/IP) connection,
     peer authentication (see <A
HREF="auth-methods.html#AUTH-PEER"
>Section 20.3.6</A
>) will be
     used instead.
    </P
></BLOCKQUOTE
></DIV
><P
>    The following configuration options are supported for <SPAN
CLASS="PRODUCTNAME"
>ident</SPAN
>:
    <P
></P
></P><DIV
CLASS="VARIABLELIST"
><DL
><DT
><TT
CLASS="LITERAL"
>map</TT
></DT
><DD
><P
>        Allows for mapping between system and database user names. See
        <A
HREF="auth-username-maps.html"
>Section 20.2</A
> for details.
       </P
></DD
></DL
></DIV
><P>
   </P
><P
>    The <SPAN
CLASS="QUOTE"
>"Identification Protocol"</SPAN
> is described in
    RFC 1413. Virtually every Unix-like
    operating system ships with an ident server that listens on TCP
    port 113 by default. The basic functionality of an ident server
    is to answer questions like <SPAN
CLASS="QUOTE"
>"What user initiated the
    connection that goes out of your port <TT
CLASS="REPLACEABLE"
><I
>X</I
></TT
>
    and connects to my port <TT
CLASS="REPLACEABLE"
><I
>Y</I
></TT
>?"</SPAN
>.
    Since <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> knows both <TT
CLASS="REPLACEABLE"
><I
>X</I
></TT
> and
    <TT
CLASS="REPLACEABLE"
><I
>Y</I
></TT
> when a physical connection is established, it
    can interrogate the ident server on the host of the connecting
    client and can theoretically determine the operating system user
    for any given connection.
   </P
><P
>    The drawback of this procedure is that it depends on the integrity
    of the client: if the client machine is untrusted or compromised,
    an attacker could run just about any program on port 113 and
    return any user name they choose. This authentication method is
    therefore only appropriate for closed networks where each client
    machine is under tight control and where the database and system
    administrators operate in close contact. In other words, you must
    trust the machine running the ident server.
    Heed the warning:
    <A
NAME="AEN38116"
></A
><TABLE
BORDER="0"
WIDTH="100%"
CELLSPACING="0"
CELLPADDING="0"
CLASS="BLOCKQUOTE"
><TR
><TD
WIDTH="10%"
VALIGN="TOP"
>&nbsp;</TD
><TD
VALIGN="TOP"
><P
>      The Identification Protocol is not intended as an authorization
      or access control protocol.
     </P
></TD
><TD
WIDTH="10%"
VALIGN="TOP"
>&nbsp;</TD
></TR
><TR
><TD
COLSPAN="2"
ALIGN="RIGHT"
VALIGN="TOP"
>--<SPAN
CLASS="ATTRIBUTION"
>RFC 1413</SPAN
></TD
><TD
WIDTH="10%"
>&nbsp;</TD
></TR
></TABLE
>
   </P
><P
>    Some ident servers have a nonstandard option that causes the returned
    user name to be encrypted, using a key that only the originating
    machine's administrator knows.  This option <SPAN
CLASS="emphasis"
><I
CLASS="EMPHASIS"
>must not</I
></SPAN
> be
    used when using the ident server with <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
>,
    since <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> does not have any way to decrypt the
    returned string to determine the actual user name.
   </P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="AUTH-PEER"
>20.3.6. Peer Authentication</A
></H2
><P
>    The peer authentication method works by obtaining the client's
    operating system user name from the kernel and using it as the
    allowed database user name (with optional user name mapping). This
    method is only supported on local connections.
   </P
><P
>    The following configuration options are supported for <SPAN
CLASS="PRODUCTNAME"
>peer</SPAN
>:
    <P
></P
></P><DIV
CLASS="VARIABLELIST"
><DL
><DT
><TT
CLASS="LITERAL"
>map</TT
></DT
><DD
><P
>        Allows for mapping between system and database user names. See
        <A
HREF="auth-username-maps.html"
>Section 20.2</A
> for details.
       </P
></DD
></DL
></DIV
><P>
   </P
><P
>    Peer authentication is only available on operating systems providing
    the <CODE
CLASS="FUNCTION"
>getpeereid()</CODE
> function, the <TT
CLASS="SYMBOL"
>SO_PEERCRED</TT
>
    socket parameter, or similar mechanisms.  Currently that includes
    <SPAN
CLASS="SYSTEMITEM"
>Linux</SPAN
>,
    most flavors of <SPAN
CLASS="SYSTEMITEM"
>BSD</SPAN
> including
    <SPAN
CLASS="SYSTEMITEM"
>OS X</SPAN
>,
    and <SPAN
CLASS="SYSTEMITEM"
>Solaris</SPAN
>.
   </P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="AUTH-LDAP"
>20.3.7. LDAP Authentication</A
></H2
><P
>    This authentication method operates similarly to
    <TT
CLASS="LITERAL"
>password</TT
> except that it uses LDAP
    as the password verification method. LDAP is used only to validate
    the user name/password pairs. Therefore the user must already
    exist in the database before LDAP can be used for
    authentication.
   </P
><P
>    LDAP authentication can operate in two modes. In the first mode,
    which we will call the simple bind mode,
    the server will bind to the distinguished name constructed as
    <TT
CLASS="REPLACEABLE"
><I
>prefix</I
></TT
> <TT
CLASS="REPLACEABLE"
><I
>username</I
></TT
> <TT
CLASS="REPLACEABLE"
><I
>suffix</I
></TT
>.
    Typically, the <TT
CLASS="REPLACEABLE"
><I
>prefix</I
></TT
> parameter is used to specify
    <TT
CLASS="LITERAL"
>cn=</TT
>, or <TT
CLASS="REPLACEABLE"
><I
>DOMAIN</I
></TT
><TT
CLASS="LITERAL"
>\</TT
> in an Active
    Directory environment.  <TT
CLASS="REPLACEABLE"
><I
>suffix</I
></TT
> is used to specify the
    remaining part of the DN in a non-Active Directory environment.
   </P
><P
>    In the second mode, which we will call the search+bind mode,
    the server first binds to the LDAP directory with
    a fixed user name and password, specified with <TT
CLASS="REPLACEABLE"
><I
>ldapbinddn</I
></TT
>
    and <TT
CLASS="REPLACEABLE"
><I
>ldapbindpasswd</I
></TT
>, and performs a search for the user trying
    to log in to the database. If no user and password is configured, an
    anonymous bind will be attempted to the directory. The search will be
    performed over the subtree at <TT
CLASS="REPLACEABLE"
><I
>ldapbasedn</I
></TT
>, and will try to
    do an exact match of the attribute specified in
    <TT
CLASS="REPLACEABLE"
><I
>ldapsearchattribute</I
></TT
>.
    Once the user has been found in
    this search, the server disconnects and re-binds to the directory as
    this user, using the password specified by the client, to verify that the
    login is correct. This mode is the same as that used by LDAP authentication
    schemes in other software, such as Apache <TT
CLASS="LITERAL"
>mod_authnz_ldap</TT
> and <TT
CLASS="LITERAL"
>pam_ldap</TT
>.
    This method allows for significantly more flexibility
    in where the user objects are located in the directory, but will cause
    two separate connections to the LDAP server to be made.
   </P
><P
>    The following configuration options are used in both modes:
    <P
></P
></P><DIV
CLASS="VARIABLELIST"
><DL
><DT
><TT
CLASS="LITERAL"
>ldapserver</TT
></DT
><DD
><P
>        Names or IP addresses of LDAP servers to connect to. Multiple
        servers may be specified, separated by spaces.
       </P
></DD
><DT
><TT
CLASS="LITERAL"
>ldapport</TT
></DT
><DD
><P
>        Port number on LDAP server to connect to. If no port is specified,
        the LDAP library's default port setting will be used.
       </P
></DD
><DT
><TT
CLASS="LITERAL"
>ldaptls</TT
></DT
><DD
><P
>        Set to 1 to make the connection between PostgreSQL and the
        LDAP server use TLS encryption. Note that this only encrypts
        the traffic to the LDAP server &mdash; the connection to the client
        will still be unencrypted unless SSL is used.
       </P
></DD
></DL
></DIV
><P>

    The following options are used in simple bind mode only:
    <P
></P
></P><DIV
CLASS="VARIABLELIST"
><DL
><DT
><TT
CLASS="LITERAL"
>ldapprefix</TT
></DT
><DD
><P
>        String to prepend to the user name when forming the DN to bind as,
        when doing simple bind authentication.
       </P
></DD
><DT
><TT
CLASS="LITERAL"
>ldapsuffix</TT
></DT
><DD
><P
>        String to append to the user name when forming the DN to bind as,
        when doing simple bind authentication.
       </P
></DD
></DL
></DIV
><P>

    The following options are used in search+bind mode only:
    <P
></P
></P><DIV
CLASS="VARIABLELIST"
><DL
><DT
><TT
CLASS="LITERAL"
>ldapbasedn</TT
></DT
><DD
><P
>        Root DN to begin the search for the user in, when doing search+bind
        authentication.
       </P
></DD
><DT
><TT
CLASS="LITERAL"
>ldapbinddn</TT
></DT
><DD
><P
>        DN of user to bind to the directory with to perform the search when
        doing search+bind authentication.
       </P
></DD
><DT
><TT
CLASS="LITERAL"
>ldapbindpasswd</TT
></DT
><DD
><P
>        Password for user to bind to the directory with to perform the search
        when doing search+bind authentication.
       </P
></DD
><DT
><TT
CLASS="LITERAL"
>ldapsearchattribute</TT
></DT
><DD
><P
>         Attribute to match against the user name in the search when doing
         search+bind authentication.  If no attribute is specified, the
         <TT
CLASS="LITERAL"
>uid</TT
> attribute will be used.
        </P
></DD
><DT
><TT
CLASS="LITERAL"
>ldapurl</TT
></DT
><DD
><P
>         An RFC 4516 LDAP URL.  This is an alternative way to write some of the
         other LDAP options in a more compact and standard form.  The format is
</P><PRE
CLASS="SYNOPSIS"
>ldap://<TT
CLASS="REPLACEABLE"
><I
>host</I
></TT
>[:<TT
CLASS="REPLACEABLE"
><I
>port</I
></TT
>]/<TT
CLASS="REPLACEABLE"
><I
>basedn</I
></TT
>[?[<TT
CLASS="REPLACEABLE"
><I
>attribute</I
></TT
>][?[<TT
CLASS="REPLACEABLE"
><I
>scope</I
></TT
>]]]</PRE
><P>
         <TT
CLASS="REPLACEABLE"
><I
>scope</I
></TT
> must be one
         of <TT
CLASS="LITERAL"
>base</TT
>, <TT
CLASS="LITERAL"
>one</TT
>, <TT
CLASS="LITERAL"
>sub</TT
>,
         typically the latter.  Only one attribute is used, and some other
         components of standard LDAP URLs such as filters and extensions are
         not supported.
        </P
><P
>         For non-anonymous binds, <TT
CLASS="LITERAL"
>ldapbinddn</TT
>
         and <TT
CLASS="LITERAL"
>ldapbindpasswd</TT
> must be specified as separate
         options.
        </P
><P
>         To use encrypted LDAP connections, the <TT
CLASS="LITERAL"
>ldaptls</TT
>
         option has to be used in addition to <TT
CLASS="LITERAL"
>ldapurl</TT
>.
         The <TT
CLASS="LITERAL"
>ldaps</TT
> URL scheme (direct SSL connection) is not
         supported.
        </P
><P
>         LDAP URLs are currently only supported with OpenLDAP, not on Windows.
        </P
></DD
></DL
></DIV
><P>
   </P
><P
>    It is an error to mix configuration options for simple bind with options
    for search+bind.
   </P
><P
>    Here is an example for a simple-bind LDAP configuration:
</P><PRE
CLASS="PROGRAMLISTING"
>host ... ldap ldapserver=ldap.example.net ldapprefix="cn=" ldapsuffix=", dc=example, dc=net"</PRE
><P>
    When a connection to the database server as database
    user <TT
CLASS="LITERAL"
>someuser</TT
> is requested, PostgreSQL will attempt to
    bind to the LDAP server using the DN <TT
CLASS="LITERAL"
>cn=someuser, dc=example,
    dc=net</TT
> and the password provided by the client.  If that connection
    succeeds, the database access is granted.
   </P
><P
>    Here is an example for a search+bind configuration:
</P><PRE
CLASS="PROGRAMLISTING"
>host ... ldap ldapserver=ldap.example.net ldapbasedn="dc=example, dc=net" ldapsearchattribute=uid</PRE
><P>
    When a connection to the database server as database
    user <TT
CLASS="LITERAL"
>someuser</TT
> is requested, PostgreSQL will attempt to
    bind anonymously (since <TT
CLASS="LITERAL"
>ldapbinddn</TT
> was not specified) to
    the LDAP server, perform a search for <TT
CLASS="LITERAL"
>(uid=someuser)</TT
>
    under the specified base DN.  If an entry is found, it will then attempt to
    bind using that found information and the password supplied by the client.
    If that second connection succeeds, the database access is granted.
   </P
><P
>    Here is the same search+bind configuration written as a URL:
</P><PRE
CLASS="PROGRAMLISTING"
>host ... ldap ldapurl="ldap://ldap.example.net/dc=example,dc=net?uid?sub"</PRE
><P>
    Some other software that supports authentication against LDAP uses the
    same URL format, so it will be easier to share the configuration.
   </P
><DIV
CLASS="TIP"
><BLOCKQUOTE
CLASS="TIP"
><P
><B
>Tip: </B
>     Since LDAP often uses commas and spaces to separate the different
     parts of a DN, it is often necessary to use double-quoted parameter
     values when configuring LDAP options, as shown in the examples.
    </P
></BLOCKQUOTE
></DIV
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="AUTH-RADIUS"
>20.3.8. RADIUS Authentication</A
></H2
><P
>    This authentication method operates similarly to
    <TT
CLASS="LITERAL"
>password</TT
> except that it uses RADIUS
    as the password verification method. RADIUS is used only to validate
    the user name/password pairs. Therefore the user must already
    exist in the database before RADIUS can be used for
    authentication.
   </P
><P
>    When using RADIUS authentication, an Access Request message will be sent
    to the configured RADIUS server. This request will be of type
    <TT
CLASS="LITERAL"
>Authenticate Only</TT
>, and include parameters for
    <TT
CLASS="LITERAL"
>user name</TT
>, <TT
CLASS="LITERAL"
>password</TT
> (encrypted) and
    <TT
CLASS="LITERAL"
>NAS Identifier</TT
>. The request will be encrypted using
    a secret shared with the server. The RADIUS server will respond to
    this server with either <TT
CLASS="LITERAL"
>Access Accept</TT
> or
    <TT
CLASS="LITERAL"
>Access Reject</TT
>. There is no support for RADIUS accounting.
   </P
><P
>    The following configuration options are supported for RADIUS:
     <P
></P
></P><DIV
CLASS="VARIABLELIST"
><DL
><DT
><TT
CLASS="LITERAL"
>radiusserver</TT
></DT
><DD
><P
>         The name or IP address of the RADIUS server to connect to.
         This parameter is required.
        </P
></DD
><DT
><TT
CLASS="LITERAL"
>radiussecret</TT
></DT
><DD
><P
>         The shared secret used when talking securely to the RADIUS
         server. This must have exactly the same value on the PostgreSQL
         and RADIUS servers. It is recommended that this be a string of
         at least 16 characters. This parameter is required.
         </P><DIV
CLASS="NOTE"
><BLOCKQUOTE
CLASS="NOTE"
><P
><B
>Note: </B
>          The encryption vector used will only be cryptographically
          strong if <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> is built with support for
          <SPAN
CLASS="PRODUCTNAME"
>OpenSSL</SPAN
>. In other cases, the transmission to the
          RADIUS server should only be considered obfuscated, not secured, and
          external security measures should be applied if necessary.
         </P
></BLOCKQUOTE
></DIV
><P>
        </P
></DD
><DT
><TT
CLASS="LITERAL"
>radiusport</TT
></DT
><DD
><P
>         The port number on the RADIUS server to connect to. If no port
         is specified, the default port <TT
CLASS="LITERAL"
>1812</TT
> will be used.
        </P
></DD
><DT
><TT
CLASS="LITERAL"
>radiusidentifier</TT
></DT
><DD
><P
>         The string used as <TT
CLASS="LITERAL"
>NAS Identifier</TT
> in the RADIUS
         requests. This parameter can be used as a second parameter
         identifying for example which database user the user is attempting
         to authenticate as, which can be used for policy matching on
         the RADIUS server. If no identifier is specified, the default
         <TT
CLASS="LITERAL"
>postgresql</TT
> will be used.
        </P
></DD
></DL
></DIV
><P>
   </P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="AUTH-CERT"
>20.3.9. Certificate Authentication</A
></H2
><P
>    This authentication method uses SSL client certificates to perform
    authentication. It is therefore only available for SSL connections.
    When using this authentication method, the server will require that
    the client provide a valid, trusted certificate.  No password prompt
    will be sent to the client.  The <TT
CLASS="LITERAL"
>cn</TT
> (Common Name)
    attribute of the certificate
    will be compared to the requested database user name, and if they match
    the login will be allowed.  User name mapping can be used to allow
    <TT
CLASS="LITERAL"
>cn</TT
> to be different from the database user name.
   </P
><P
>    The following configuration options are supported for SSL certificate
    authentication:
    <P
></P
></P><DIV
CLASS="VARIABLELIST"
><DL
><DT
><TT
CLASS="LITERAL"
>map</TT
></DT
><DD
><P
>        Allows for mapping between system and database user names. See
        <A
HREF="auth-username-maps.html"
>Section 20.2</A
> for details.
       </P
></DD
></DL
></DIV
><P>
   </P
><P
>    In a <TT
CLASS="FILENAME"
>pg_hba.conf</TT
> record specifying certificate
    authentication, the authentication option <TT
CLASS="LITERAL"
>clientcert</TT
> is
    assumed to be <TT
CLASS="LITERAL"
>1</TT
>, and it cannot be turned off since a client
    certificate is necessary for this method.  What the <TT
CLASS="LITERAL"
>cert</TT
>
    method adds to the basic <TT
CLASS="LITERAL"
>clientcert</TT
> certificate validity test
    is a check that the <TT
CLASS="LITERAL"
>cn</TT
> attribute matches the database
    user name.
   </P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="AUTH-PAM"
>20.3.10. PAM Authentication</A
></H2
><P
>    This authentication method operates similarly to
    <TT
CLASS="LITERAL"
>password</TT
> except that it uses PAM (Pluggable
    Authentication Modules) as the authentication mechanism. The
    default PAM service name is <TT
CLASS="LITERAL"
>postgresql</TT
>.
    PAM is used only to validate user name/password pairs and optionally the
    connected remote host name or IP address. Therefore the user must already
    exist in the database before PAM can be used for authentication.  For more
    information about PAM, please read the
    <A
HREF="http://www.kernel.org/pub/linux/libs/pam/"
TARGET="_top"
>    <SPAN
CLASS="PRODUCTNAME"
>Linux-PAM</SPAN
> Page</A
>.
   </P
><P
>    The following configuration options are supported for PAM:
    <P
></P
></P><DIV
CLASS="VARIABLELIST"
><DL
><DT
><TT
CLASS="LITERAL"
>pamservice</TT
></DT
><DD
><P
>        PAM service name.
       </P
></DD
><DT
><TT
CLASS="LITERAL"
>pam_use_hostname</TT
></DT
><DD
><P
>        Determines whether the remote IP address or the host name is provided
        to PAM modules through the <TT
CLASS="SYMBOL"
>PAM_RHOST</TT
> item.  By
        default, the IP address is used.  Set this option to 1 to use the
        resolved host name instead.  Host name resolution can lead to login
        delays.  (Most PAM configurations don't use this information, so it is
        only necessary to consider this setting if a PAM configuration was
        specifically created to make use of it.)
       </P
></DD
></DL
></DIV
><P>
   </P
><DIV
CLASS="NOTE"
><BLOCKQUOTE
CLASS="NOTE"
><P
><B
>Note: </B
>     If PAM is set up to read <TT
CLASS="FILENAME"
>/etc/shadow</TT
>, authentication
     will fail because the PostgreSQL server is started by a non-root
     user.  However, this is not an issue when PAM is configured to use
     LDAP or other authentication methods.
    </P
></BLOCKQUOTE
></DIV
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="AUTH-BSD"
>20.3.11. BSD Authentication</A
></H2
><P
>    This authentication method operates similarly to
    <TT
CLASS="LITERAL"
>password</TT
> except that it uses BSD Authentication
    to verify the password. BSD Authentication is used only
    to validate user name/password pairs. Therefore the user's role must
    already exist in the database before BSD Authentication can be used
    for authentication. The BSD Authentication framework is currently
    only available on OpenBSD.
   </P
><P
>    BSD Authentication in <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> uses
    the <TT
CLASS="LITERAL"
>auth-postgresql</TT
> login type and authenticates with
    the <TT
CLASS="LITERAL"
>postgresql</TT
> login class if that's defined
    in <TT
CLASS="FILENAME"
>login.conf</TT
>. By default that login class does not
    exist, and <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> will use the default login class.
   </P
><DIV
CLASS="NOTE"
><BLOCKQUOTE
CLASS="NOTE"
><P
><B
>Note: </B
>     To use BSD Authentication, the PostgreSQL user account (that is, the
     operating system user running the server) must first be added to
     the <TT
CLASS="LITERAL"
>auth</TT
> group.  The <TT
CLASS="LITERAL"
>auth</TT
> group
     exists by default on OpenBSD systems.
    </P
></BLOCKQUOTE
></DIV
></DIV
></DIV
><DIV
CLASS="NAVFOOTER"
><HR
ALIGN="LEFT"
WIDTH="100%"><TABLE
SUMMARY="Footer navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
><A
HREF="auth-username-maps.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="index.html"
ACCESSKEY="H"
>Home</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
><A
HREF="client-authentication-problems.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
>User Name Maps</TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="client-authentication.html"
ACCESSKEY="U"
>Up</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
>Authentication Problems</TD
></TR
></TABLE
></DIV
></BODY
></HTML
>