Sophie

Sophie

distrib > Mageia > 7 > i586 > by-pkgid > 9b6cc37ce608401d44f6535a0c7cb777 > files > 267

postgresql11-docs-11.5-1.mga7.noarch.rpm

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>36.4. Using Host Variables</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="ecpg-commands.html" title="36.3. Running SQL Commands" /><link rel="next" href="ecpg-dynamic.html" title="36.5. Dynamic SQL" /></head><body><div xmlns="http://www.w3.org/TR/xhtml1/transitional" class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">36.4. Using Host Variables</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="ecpg-commands.html" title="36.3. Running SQL Commands">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="ecpg.html" title="Chapter 36. ECPG - Embedded SQL in C">Up</a></td><th width="60%" align="center">Chapter 36. <span xmlns="http://www.w3.org/1999/xhtml" class="application">ECPG</span> - Embedded <acronym xmlns="http://www.w3.org/1999/xhtml" class="acronym">SQL</acronym> in C</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 11.5 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="ecpg-dynamic.html" title="36.5. Dynamic SQL">Next</a></td></tr></table><hr></hr></div><div class="sect1" id="ECPG-VARIABLES"><div class="titlepage"><div><div><h2 class="title" style="clear: both">36.4. Using Host Variables</h2></div></div></div><div class="toc"><dl class="toc"><dt><span class="sect2"><a href="ecpg-variables.html#ECPG-VARIABLES-OVERVIEW">36.4.1. Overview</a></span></dt><dt><span class="sect2"><a href="ecpg-variables.html#ECPG-DECLARE-SECTIONS">36.4.2. Declare Sections</a></span></dt><dt><span class="sect2"><a href="ecpg-variables.html#ECPG-RETRIEVING">36.4.3. Retrieving Query Results</a></span></dt><dt><span class="sect2"><a href="ecpg-variables.html#ECPG-VARIABLES-TYPE-MAPPING">36.4.4. Type Mapping</a></span></dt><dt><span class="sect2"><a href="ecpg-variables.html#ECPG-VARIABLES-NONPRIMITIVE-SQL">36.4.5. Handling Nonprimitive SQL Data Types</a></span></dt><dt><span class="sect2"><a href="ecpg-variables.html#ECPG-INDICATORS">36.4.6. Indicators</a></span></dt></dl></div><p>
   In <a class="xref" href="ecpg-commands.html" title="36.3. Running SQL Commands">Section 36.3</a> you saw how you can execute SQL
   statements from an embedded SQL program.  Some of those statements
   only used fixed values and did not provide a way to insert
   user-supplied values into statements or have the program process
   the values returned by the query.  Those kinds of statements are
   not really useful in real applications.  This section explains in
   detail how you can pass data between your C program and the
   embedded SQL statements using a simple mechanism called
   <em class="firstterm">host variables</em>. In an embedded SQL program  we
   consider the SQL statements to be <em class="firstterm">guests</em> in the C
   program code which is the <em class="firstterm">host language</em>. Therefore
   the variables of the C program are called <em class="firstterm">host
   variables</em>.
  </p><p>
   Another way to exchange values between PostgreSQL backends and ECPG
   applications is the use of SQL descriptors, described
   in <a class="xref" href="ecpg-descriptors.html" title="36.7. Using Descriptor Areas">Section 36.7</a>.
  </p><div class="sect2" id="ECPG-VARIABLES-OVERVIEW"><div class="titlepage"><div><div><h3 class="title">36.4.1. Overview</h3></div></div></div><p>
    Passing data between the C program and the SQL statements is
    particularly simple in embedded SQL.  Instead of having the
    program paste the data into the statement, which entails various
    complications, such as properly quoting the value, you can simply
    write the name of a C variable into the SQL statement, prefixed by
    a colon.  For example:
</p><pre class="programlisting">
EXEC SQL INSERT INTO sometable VALUES (:v1, 'foo', :v2);
</pre><p>
    This statement refers to two C variables named
    <code class="varname">v1</code> and <code class="varname">v2</code> and also uses a
    regular SQL string literal, to illustrate that you are not
    restricted to use one kind of data or the other.
   </p><p>
    This style of inserting C variables in SQL statements works
    anywhere a value expression is expected in an SQL statement.
   </p></div><div class="sect2" id="ECPG-DECLARE-SECTIONS"><div class="titlepage"><div><div><h3 class="title">36.4.2. Declare Sections</h3></div></div></div><p>
    To pass data from the program to the database, for example as
    parameters in a query, or to pass data from the database back to
    the program, the C variables that are intended to contain this
    data need to be declared in specially marked sections, so the
    embedded SQL preprocessor is made aware of them.
   </p><p>
    This section starts with:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
</pre><p>
    and ends with:
</p><pre class="programlisting">
EXEC SQL END DECLARE SECTION;
</pre><p>
    Between those lines, there must be normal C variable declarations,
    such as:
</p><pre class="programlisting">
int   x = 4;
char  foo[16], bar[16];
</pre><p>
    As you can see, you can optionally assign an initial value to the variable.
    The variable's scope is determined by the location of its declaring
    section within the program.
    You can also declare variables with the following syntax which implicitly
    creates a declare section:
</p><pre class="programlisting">
EXEC SQL int i = 4;
</pre><p>
    You can have as many declare sections in a program as you like.
   </p><p>
    The declarations are also echoed to the output file as normal C
    variables, so there's no need to declare them again.  Variables
    that are not intended to be used in SQL commands can be declared
    normally outside these special sections.
   </p><p>
    The definition of a structure or union also must be listed inside
    a <code class="literal">DECLARE</code> section. Otherwise the preprocessor cannot
    handle these types since it does not know the definition.
   </p></div><div class="sect2" id="ECPG-RETRIEVING"><div class="titlepage"><div><div><h3 class="title">36.4.3. Retrieving Query Results</h3></div></div></div><p>
    Now you should be able to pass data generated by your program into
    an SQL command.  But how do you retrieve the results of a query?
    For that purpose, embedded SQL provides special variants of the
    usual commands <code class="command">SELECT</code> and
    <code class="command">FETCH</code>.  These commands have a special
    <code class="literal">INTO</code> clause that specifies which host variables
    the retrieved values are to be stored in.
    <code class="command">SELECT</code> is used for a query that returns only
    single row, and <code class="command">FETCH</code> is used for a query that
    returns multiple rows, using a cursor.
   </p><p>
    Here is an example:
</p><pre class="programlisting">
/*
 * assume this table:
 * CREATE TABLE test1 (a int, b varchar(50));
 */

EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

 ...

EXEC SQL SELECT a, b INTO :v1, :v2 FROM test;
</pre><p>
    So the <code class="literal">INTO</code> clause appears between the select
    list and the <code class="literal">FROM</code> clause.  The number of
    elements in the select list and the list after
    <code class="literal">INTO</code> (also called the target list) must be
    equal.
   </p><p>
    Here is an example using the command <code class="command">FETCH</code>:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

 ...

EXEC SQL DECLARE foo CURSOR FOR SELECT a, b FROM test;

 ...

do
{
    ...
    EXEC SQL FETCH NEXT FROM foo INTO :v1, :v2;
    ...
} while (...);
</pre><p>
    Here the <code class="literal">INTO</code> clause appears after all the
    normal clauses.
   </p></div><div class="sect2" id="ECPG-VARIABLES-TYPE-MAPPING"><div class="titlepage"><div><div><h3 class="title">36.4.4. Type Mapping</h3></div></div></div><p>
    When ECPG applications exchange values between the PostgreSQL
    server and the C application, such as when retrieving query
    results from the server or executing SQL statements with input
    parameters, the values need to be converted between PostgreSQL
    data types and host language variable types (C language data
    types, concretely).  One of the main points of ECPG is that it
    takes care of this automatically in most cases.
   </p><p>
    In this respect, there are two kinds of data types: Some simple
    PostgreSQL data types, such as <code class="type">integer</code>
    and <code class="type">text</code>, can be read and written by the application
    directly.  Other PostgreSQL data types, such
    as <code class="type">timestamp</code> and <code class="type">numeric</code> can only be
    accessed through special library functions; see
    <a class="xref" href="ecpg-variables.html#ECPG-SPECIAL-TYPES" title="36.4.4.2. Accessing Special Data Types">Section 36.4.4.2</a>.
   </p><p>
    <a class="xref" href="ecpg-variables.html#ECPG-DATATYPE-HOSTVARS-TABLE" title="Table 36.1. Mapping Between PostgreSQL Data Types and C Variable Types">Table 36.1</a> shows which PostgreSQL
    data types correspond to which C data types.  When you wish to
    send or receive a value of a given PostgreSQL data type, you
    should declare a C variable of the corresponding C data type in
    the declare section.
   </p><div class="table" id="ECPG-DATATYPE-HOSTVARS-TABLE"><p class="title"><strong>Table 36.1. Mapping Between PostgreSQL Data Types and C Variable Types</strong></p><div class="table-contents"><table class="table" summary="Mapping Between PostgreSQL Data Types and C Variable Types" border="1"><colgroup><col /><col /></colgroup><thead><tr><th>PostgreSQL data type</th><th>Host variable type</th></tr></thead><tbody><tr><td><code class="type">smallint</code></td><td><code class="type">short</code></td></tr><tr><td><code class="type">integer</code></td><td><code class="type">int</code></td></tr><tr><td><code class="type">bigint</code></td><td><code class="type">long long int</code></td></tr><tr><td><code class="type">decimal</code></td><td><code class="type">decimal</code><a href="#ftn.ECPG-DATATYPE-TABLE-FN" class="footnote"><sup class="footnote" id="ECPG-DATATYPE-TABLE-FN">[a]</sup></a></td></tr><tr><td><code class="type">numeric</code></td><td><code class="type">numeric</code><a href="ecpg-variables.html#ftn.ECPG-DATATYPE-TABLE-FN" class="footnoteref"><sup class="footnoteref">[a]</sup></a></td></tr><tr><td><code class="type">real</code></td><td><code class="type">float</code></td></tr><tr><td><code class="type">double precision</code></td><td><code class="type">double</code></td></tr><tr><td><code class="type">smallserial</code></td><td><code class="type">short</code></td></tr><tr><td><code class="type">serial</code></td><td><code class="type">int</code></td></tr><tr><td><code class="type">bigserial</code></td><td><code class="type">long long int</code></td></tr><tr><td><code class="type">oid</code></td><td><code class="type">unsigned int</code></td></tr><tr><td><code class="type">character(<em class="replaceable"><code>n</code></em>)</code>, <code class="type">varchar(<em class="replaceable"><code>n</code></em>)</code>, <code class="type">text</code></td><td><code class="type">char[<em class="replaceable"><code>n</code></em>+1]</code>, <code class="type">VARCHAR[<em class="replaceable"><code>n</code></em>+1]</code><a href="#ftn.id-1.7.5.10.7.5.2.2.12.2.3" class="footnote"><sup class="footnote" id="id-1.7.5.10.7.5.2.2.12.2.3">[b]</sup></a></td></tr><tr><td><code class="type">name</code></td><td><code class="type">char[NAMEDATALEN]</code></td></tr><tr><td><code class="type">timestamp</code></td><td><code class="type">timestamp</code><a href="ecpg-variables.html#ftn.ECPG-DATATYPE-TABLE-FN" class="footnoteref"><sup class="footnoteref">[a]</sup></a></td></tr><tr><td><code class="type">interval</code></td><td><code class="type">interval</code><a href="ecpg-variables.html#ftn.ECPG-DATATYPE-TABLE-FN" class="footnoteref"><sup class="footnoteref">[a]</sup></a></td></tr><tr><td><code class="type">date</code></td><td><code class="type">date</code><a href="ecpg-variables.html#ftn.ECPG-DATATYPE-TABLE-FN" class="footnoteref"><sup class="footnoteref">[a]</sup></a></td></tr><tr><td><code class="type">boolean</code></td><td><code class="type">bool</code><a href="#ftn.id-1.7.5.10.7.5.2.2.17.2.2" class="footnote"><sup class="footnote" id="id-1.7.5.10.7.5.2.2.17.2.2">[c]</sup></a></td></tr><tr><td><code class="type">bytea</code></td><td><code class="type">char *</code></td></tr></tbody><tbody class="footnotes"><tr><td colspan="2"><div id="ftn.ECPG-DATATYPE-TABLE-FN" class="footnote"><p><a href="#ECPG-DATATYPE-TABLE-FN" class="para"><sup class="para">[a] </sup></a>This type can only be accessed through special library functions; see <a class="xref" href="ecpg-variables.html#ECPG-SPECIAL-TYPES" title="36.4.4.2. Accessing Special Data Types">Section 36.4.4.2</a>.</p></div><div id="ftn.id-1.7.5.10.7.5.2.2.12.2.3" class="footnote"><p><a href="#id-1.7.5.10.7.5.2.2.12.2.3" class="para"><sup class="para">[b] </sup></a>declared in <code class="filename">ecpglib.h</code></p></div><div id="ftn.id-1.7.5.10.7.5.2.2.17.2.2" class="footnote"><p><a href="#id-1.7.5.10.7.5.2.2.17.2.2" class="para"><sup class="para">[c] </sup></a>declared in <code class="filename">ecpglib.h</code> if not native</p></div></td></tr></tbody></table></div></div><br class="table-break" /><div class="sect3" id="ECPG-CHAR"><div class="titlepage"><div><div><h4 class="title">36.4.4.1. Handling Character Strings</h4></div></div></div><p>
     To handle SQL character string data types, such
     as <code class="type">varchar</code> and <code class="type">text</code>, there are two
     possible ways to declare the host variables.
    </p><p>
     One way is using <code class="type">char[]</code>, an array
     of <code class="type">char</code>, which is the most common way to handle
     character data in C.
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
    char str[50];
EXEC SQL END DECLARE SECTION;
</pre><p>
     Note that you have to take care of the length yourself.  If you
     use this host variable as the target variable of a query which
     returns a string with more than 49 characters, a buffer overflow
     occurs.
    </p><p>
     The other way is using the <code class="type">VARCHAR</code> type, which is a
     special type provided by ECPG.  The definition on an array of
     type <code class="type">VARCHAR</code> is converted into a
     named <code class="type">struct</code> for every variable. A declaration like:
</p><pre class="programlisting">
VARCHAR var[180];
</pre><p>
     is converted into:
</p><pre class="programlisting">
struct varchar_var { int len; char arr[180]; } var;
</pre><p>
     The member <code class="structfield">arr</code> hosts the string
     including a terminating zero byte.  Thus, to store a string in
     a <code class="type">VARCHAR</code> host variable, the host variable has to be
     declared with the length including the zero byte terminator.  The
     member <code class="structfield">len</code> holds the length of the
     string stored in the <code class="structfield">arr</code> without the
     terminating zero byte.  When a host variable is used as input for
     a query, if <code class="literal">strlen(arr)</code>
     and <code class="structfield">len</code> are different, the shorter one
     is used.
    </p><p>
     <code class="type">VARCHAR</code> can be written in upper or lower case, but
     not in mixed case.
    </p><p>
     <code class="type">char</code> and <code class="type">VARCHAR</code> host variables can
     also hold values of other SQL types, which will be stored in
     their string forms.
    </p></div><div class="sect3" id="ECPG-SPECIAL-TYPES"><div class="titlepage"><div><div><h4 class="title">36.4.4.2. Accessing Special Data Types</h4></div></div></div><p>
     ECPG contains some special types that help you to interact easily
     with some special data types from the PostgreSQL server. In
     particular, it has implemented support for the
     <code class="type">numeric</code>, <code class="type">decimal</code>, <code class="type">date</code>, <code class="type">timestamp</code>,
     and <code class="type">interval</code> types.  These data types cannot usefully be
     mapped to primitive host variable types (such
     as <code class="type">int</code>, <code class="type">long long int</code>,
     or <code class="type">char[]</code>), because they have a complex internal
     structure.  Applications deal with these types by declaring host
     variables in special types and accessing them using functions in
     the pgtypes library.  The pgtypes library, described in detail
     in <a class="xref" href="ecpg-pgtypes.html" title="36.6. pgtypes Library">Section 36.6</a> contains basic functions to deal
     with those types, such that you do not need to send a query to
     the SQL server just for adding an interval to a time stamp for
     example.
    </p><p>
     The follow subsections describe these special data types. For
     more details about pgtypes library functions,
     see <a class="xref" href="ecpg-pgtypes.html" title="36.6. pgtypes Library">Section 36.6</a>.
    </p><div class="sect4" id="id-1.7.5.10.7.7.4"><div class="titlepage"><div><div><h5 class="title">36.4.4.2.1. timestamp, date</h5></div></div></div><p>
      Here is a pattern for handling <code class="type">timestamp</code> variables
      in the ECPG host application.
     </p><p>
      First, the program has to include the header file for the
      <code class="type">timestamp</code> type:
</p><pre class="programlisting">
#include &lt;pgtypes_timestamp.h&gt;
</pre><p>
     </p><p>
      Next, declare a host variable as type <code class="type">timestamp</code> in
      the declare section:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
timestamp ts;
EXEC SQL END DECLARE SECTION;
</pre><p>
     </p><p>
      And after reading a value into the host variable, process it
      using pgtypes library functions. In following example, the
      <code class="type">timestamp</code> value is converted into text (ASCII) form
      with the <code class="function">PGTYPEStimestamp_to_asc()</code>
      function:
</p><pre class="programlisting">
EXEC SQL SELECT now()::timestamp INTO :ts;

printf("ts = %s\n", PGTYPEStimestamp_to_asc(ts));
</pre><p>
      This example will show some result like following:
</p><pre class="screen">
ts = 2010-06-27 18:03:56.949343
</pre><p>
     </p><p>
      In addition, the DATE type can be handled in the same way. The
      program has to include <code class="filename">pgtypes_date.h</code>, declare a host variable
      as the date type and convert a DATE value into a text form using
      <code class="function">PGTYPESdate_to_asc()</code> function. For more details about the
      pgtypes library functions, see <a class="xref" href="ecpg-pgtypes.html" title="36.6. pgtypes Library">Section 36.6</a>.
     </p></div><div class="sect4" id="ECPG-TYPE-INTERVAL"><div class="titlepage"><div><div><h5 class="title">36.4.4.2.2. interval</h5></div></div></div><p>
      The handling of the <code class="type">interval</code> type is also similar
      to the <code class="type">timestamp</code> and <code class="type">date</code> types.  It
      is required, however, to allocate memory for
      an <code class="type">interval</code> type value explicitly.  In other words,
      the memory space for the variable has to be allocated in the
      heap memory, not in the stack memory.
     </p><p>
      Here is an example program:
</p><pre class="programlisting">
#include &lt;stdio.h&gt;
#include &lt;stdlib.h&gt;
#include &lt;pgtypes_interval.h&gt;

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
    interval *in;
EXEC SQL END DECLARE SECTION;

    EXEC SQL CONNECT TO testdb;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

    in = PGTYPESinterval_new();
    EXEC SQL SELECT '1 min'::interval INTO :in;
    printf("interval = %s\n", PGTYPESinterval_to_asc(in));
    PGTYPESinterval_free(in);

    EXEC SQL COMMIT;
    EXEC SQL DISCONNECT ALL;
    return 0;
}
</pre><p>
     </p></div><div class="sect4" id="ECPG-TYPE-NUMERIC-DECIMAL"><div class="titlepage"><div><div><h5 class="title">36.4.4.2.3. numeric, decimal</h5></div></div></div><p>
      The handling of the <code class="type">numeric</code>
      and <code class="type">decimal</code> types is similar to the
      <code class="type">interval</code> type: It requires defining a pointer,
      allocating some memory space on the heap, and accessing the
      variable using the pgtypes library functions.  For more details
      about the pgtypes library functions,
      see <a class="xref" href="ecpg-pgtypes.html" title="36.6. pgtypes Library">Section 36.6</a>.
     </p><p>
      No functions are provided specifically for
      the <code class="type">decimal</code> type.  An application has to convert it
      to a <code class="type">numeric</code> variable using a pgtypes library
      function to do further processing.
     </p><p>
      Here is an example program handling <code class="type">numeric</code>
      and <code class="type">decimal</code> type variables.
</p><pre class="programlisting">
#include &lt;stdio.h&gt;
#include &lt;stdlib.h&gt;
#include &lt;pgtypes_numeric.h&gt;

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
    numeric *num;
    numeric *num2;
    decimal *dec;
EXEC SQL END DECLARE SECTION;

    EXEC SQL CONNECT TO testdb;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

    num = PGTYPESnumeric_new();
    dec = PGTYPESdecimal_new();

    EXEC SQL SELECT 12.345::numeric(4,2), 23.456::decimal(4,2) INTO :num, :dec;

    printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 0));
    printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 1));
    printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 2));

    /* Convert decimal to numeric to show a decimal value. */
    num2 = PGTYPESnumeric_new();
    PGTYPESnumeric_from_decimal(dec, num2);

    printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 0));
    printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 1));
    printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 2));

    PGTYPESnumeric_free(num2);
    PGTYPESdecimal_free(dec);
    PGTYPESnumeric_free(num);

    EXEC SQL COMMIT;
    EXEC SQL DISCONNECT ALL;
    return 0;
}
</pre><p>
     </p></div></div><div class="sect3" id="ECPG-VARIABLES-NONPRIMITIVE-C"><div class="titlepage"><div><div><h4 class="title">36.4.4.3. Host Variables with Nonprimitive Types</h4></div></div></div><p>
     As a host variable you can also use arrays, typedefs, structs, and
     pointers.
    </p><div class="sect4" id="ECPG-VARIABLES-ARRAYS"><div class="titlepage"><div><div><h5 class="title">36.4.4.3.1. Arrays</h5></div></div></div><p>
      There are two use cases for arrays as host variables.  The first
      is a way to store some text string in <code class="type">char[]</code>
      or <code class="type">VARCHAR[]</code>, as
      explained in <a class="xref" href="ecpg-variables.html#ECPG-CHAR" title="36.4.4.1. Handling Character Strings">Section 36.4.4.1</a>.  The second use case is to
      retrieve multiple rows from a query result without using a
      cursor.  Without an array, to process a query result consisting
      of multiple rows, it is required to use a cursor and
      the <code class="command">FETCH</code> command.  But with array host
      variables, multiple rows can be received at once.  The length of
      the array has to be defined to be able to accommodate all rows,
      otherwise a buffer overflow will likely occur.
     </p><p>
      Following example scans the <code class="literal">pg_database</code>
      system table and shows all OIDs and names of the available
      databases:
</p><pre class="programlisting">
int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
    int dbid[8];
    char dbname[8][16];
    int i;
EXEC SQL END DECLARE SECTION;

    memset(dbname, 0, sizeof(char)* 16 * 8);
    memset(dbid, 0, sizeof(int) * 8);

    EXEC SQL CONNECT TO testdb;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

    /* Retrieve multiple rows into arrays at once. */
    EXEC SQL SELECT oid,datname INTO :dbid, :dbname FROM pg_database;

    for (i = 0; i &lt; 8; i++)
        printf("oid=%d, dbname=%s\n", dbid[i], dbname[i]);

    EXEC SQL COMMIT;
    EXEC SQL DISCONNECT ALL;
    return 0;
}
</pre><p>

    This example shows following result. (The exact values depend on
    local circumstances.)
</p><pre class="screen">
oid=1, dbname=template1
oid=11510, dbname=template0
oid=11511, dbname=postgres
oid=313780, dbname=testdb
oid=0, dbname=
oid=0, dbname=
oid=0, dbname=
</pre><p>
     </p></div><div class="sect4" id="ECPG-VARIABLES-STRUCT"><div class="titlepage"><div><div><h5 class="title">36.4.4.3.2. Structures</h5></div></div></div><p>
      A structure whose member names match the column names of a query
      result, can be used to retrieve multiple columns at once.  The
      structure enables handling multiple column values in a single
      host variable.
     </p><p>
      The following example retrieves OIDs, names, and sizes of the
      available databases from the <code class="literal">pg_database</code>
      system table and using
      the <code class="function">pg_database_size()</code> function.  In this
      example, a structure variable <code class="varname">dbinfo_t</code> with
      members whose names match each column in
      the <code class="literal">SELECT</code> result is used to retrieve one
      result row without putting multiple host variables in
      the <code class="literal">FETCH</code> statement.
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
    typedef struct
    {
       int oid;
       char datname[65];
       long long int size;
    } dbinfo_t;

    dbinfo_t dbval;
EXEC SQL END DECLARE SECTION;

    memset(&amp;dbval, 0, sizeof(dbinfo_t));

    EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size FROM pg_database;
    EXEC SQL OPEN cur1;

    /* when end of result set reached, break out of while loop */
    EXEC SQL WHENEVER NOT FOUND DO BREAK;

    while (1)
    {
        /* Fetch multiple columns into one structure. */
        EXEC SQL FETCH FROM cur1 INTO :dbval;

        /* Print members of the structure. */
        printf("oid=%d, datname=%s, size=%lld\n", dbval.oid, dbval.datname, dbval.size);
    }

    EXEC SQL CLOSE cur1;
</pre><p>
     </p><p>
      This example shows following result. (The exact values depend on
      local circumstances.)
</p><pre class="screen">
oid=1, datname=template1, size=4324580
oid=11510, datname=template0, size=4243460
oid=11511, datname=postgres, size=4324580
oid=313780, datname=testdb, size=8183012
</pre><p>
     </p><p>
      Structure host variables <span class="quote">“<span class="quote">absorb</span>”</span> as many columns
      as the structure as fields.  Additional columns can be assigned
      to other host variables. For example, the above program could
      also be restructured like this, with the <code class="varname">size</code>
      variable outside the structure:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
    typedef struct
    {
       int oid;
       char datname[65];
    } dbinfo_t;

    dbinfo_t dbval;
    long long int size;
EXEC SQL END DECLARE SECTION;

    memset(&amp;dbval, 0, sizeof(dbinfo_t));

    EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size FROM pg_database;
    EXEC SQL OPEN cur1;

    /* when end of result set reached, break out of while loop */
    EXEC SQL WHENEVER NOT FOUND DO BREAK;

    while (1)
    {
        /* Fetch multiple columns into one structure. */
        EXEC SQL FETCH FROM cur1 INTO :dbval, :size;

        /* Print members of the structure. */
        printf("oid=%d, datname=%s, size=%lld\n", dbval.oid, dbval.datname, size);
    }

    EXEC SQL CLOSE cur1;
</pre><p>
     </p></div><div class="sect4" id="id-1.7.5.10.7.8.5"><div class="titlepage"><div><div><h5 class="title">36.4.4.3.3. Typedefs</h5></div></div></div><p>
      Use the <code class="literal">typedef</code> keyword to map new types to already
      existing types.
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
    typedef char mychartype[40];
    typedef long serial_t;
EXEC SQL END DECLARE SECTION;
</pre><p>
      Note that you could also use:
</p><pre class="programlisting">
EXEC SQL TYPE serial_t IS long;
</pre><p>
      This declaration does not need to be part of a declare section.
     </p></div><div class="sect4" id="id-1.7.5.10.7.8.6"><div class="titlepage"><div><div><h5 class="title">36.4.4.3.4. Pointers</h5></div></div></div><p>
      You can declare pointers to the most common types. Note however
      that you cannot use pointers as target variables of queries
      without auto-allocation. See <a class="xref" href="ecpg-descriptors.html" title="36.7. Using Descriptor Areas">Section 36.7</a>
      for more information on auto-allocation.
     </p><p>
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
    int   *intp;
    char **charp;
EXEC SQL END DECLARE SECTION;
</pre><p>
     </p></div></div></div><div class="sect2" id="ECPG-VARIABLES-NONPRIMITIVE-SQL"><div class="titlepage"><div><div><h3 class="title">36.4.5. Handling Nonprimitive SQL Data Types</h3></div></div></div><p>
    This section contains information on how to handle nonscalar and
    user-defined SQL-level data types in ECPG applications.  Note that
    this is distinct from the handling of host variables of
    nonprimitive types, described in the previous section.
   </p><div class="sect3" id="id-1.7.5.10.8.3"><div class="titlepage"><div><div><h4 class="title">36.4.5.1. Arrays</h4></div></div></div><p>
     Multi-dimensional SQL-level arrays are not directly supported in ECPG.
     One-dimensional SQL-level arrays can be mapped into C array host
     variables and vice-versa.  However, when creating a statement ecpg does
     not know the types of the columns, so that it cannot check if a C array
     is input into a corresponding SQL-level array.  When processing the
     output of a SQL statement, ecpg has the necessary information and thus
     checks if both are arrays.
    </p><p>
     If a query accesses <span class="emphasis"><em>elements</em></span> of an array
     separately, then this avoids the use of arrays in ECPG.  Then, a
     host variable with a type that can be mapped to the element type
     should be used.  For example, if a column type is array of
     <code class="type">integer</code>, a host variable of type <code class="type">int</code>
     can be used.  Also if the element type is <code class="type">varchar</code>
     or <code class="type">text</code>, a host variable of type <code class="type">char[]</code>
     or <code class="type">VARCHAR[]</code> can be used.
    </p><p>
     Here is an example.  Assume the following table:
</p><pre class="programlisting">
CREATE TABLE t3 (
    ii integer[]
);

testdb=&gt; SELECT * FROM t3;
     ii
-------------
 {1,2,3,4,5}
(1 row)
</pre><p>

     The following example program retrieves the 4th element of the
     array and stores it into a host variable of
     type <code class="type">int</code>:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
int ii;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    EXEC SQL FETCH FROM cur1 INTO :ii ;
    printf("ii=%d\n", ii);
}

EXEC SQL CLOSE cur1;
</pre><p>

     This example shows the following result:
</p><pre class="screen">
ii=4
</pre><p>
    </p><p>
     To map multiple array elements to the multiple elements in an
     array type host variables each element of array column and each
     element of the host variable array have to be managed separately,
     for example:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[1], ii[2], ii[3], ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    EXEC SQL FETCH FROM cur1 INTO :ii_a[0], :ii_a[1], :ii_a[2], :ii_a[3];
    ...
}
</pre><p>
    </p><p>
     Note again that
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    /* WRONG */
    EXEC SQL FETCH FROM cur1 INTO :ii_a;
    ...
}
</pre><p>
     would not work correctly in this case, because you cannot map an
     array type column to an array host variable directly.
    </p><p>
     Another workaround is to store arrays in their external string
     representation in host variables of type <code class="type">char[]</code>
     or <code class="type">VARCHAR[]</code>.  For more details about this
     representation, see <a class="xref" href="arrays.html#ARRAYS-INPUT" title="8.15.2. Array Value Input">Section 8.15.2</a>.  Note that
     this means that the array cannot be accessed naturally as an
     array in the host program (without further processing that parses
     the text representation).
    </p></div><div class="sect3" id="id-1.7.5.10.8.4"><div class="titlepage"><div><div><h4 class="title">36.4.5.2. Composite Types</h4></div></div></div><p>
     Composite types are not directly supported in ECPG, but an easy workaround is possible.
  The
     available workarounds are similar to the ones described for
     arrays above: Either access each attribute separately or use the
     external string representation.
    </p><p>
     For the following examples, assume the following type and table:
</p><pre class="programlisting">
CREATE TYPE comp_t AS (intval integer, textval varchar(32));
CREATE TABLE t4 (compval comp_t);
INSERT INTO t4 VALUES ( (256, 'PostgreSQL') );
</pre><p>

     The most obvious solution is to access each attribute separately.
     The following program retrieves data from the example table by
     selecting each attribute of the type <code class="type">comp_t</code>
     separately:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
int intval;
varchar textval[33];
EXEC SQL END DECLARE SECTION;

/* Put each element of the composite type column in the SELECT list. */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    /* Fetch each element of the composite type column into host variables. */
    EXEC SQL FETCH FROM cur1 INTO :intval, :textval;

    printf("intval=%d, textval=%s\n", intval, textval.arr);
}

EXEC SQL CLOSE cur1;
</pre><p>
    </p><p>
     To enhance this example, the host variables to store values in
     the <code class="command">FETCH</code> command can be gathered into one
     structure.  For more details about the host variable in the
     structure form, see <a class="xref" href="ecpg-variables.html#ECPG-VARIABLES-STRUCT" title="36.4.4.3.2. Structures">Section 36.4.4.3.2</a>.
     To switch to the structure, the example can be modified as below.
     The two host variables, <code class="varname">intval</code>
     and <code class="varname">textval</code>, become members of
     the <code class="structname">comp_t</code> structure, and the structure
     is specified on the <code class="command">FETCH</code> command.
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
typedef struct
{
    int intval;
    varchar textval[33];
} comp_t;

comp_t compval;
EXEC SQL END DECLARE SECTION;

/* Put each element of the composite type column in the SELECT list. */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    /* Put all values in the SELECT list into one structure. */
    EXEC SQL FETCH FROM cur1 INTO :compval;

    printf("intval=%d, textval=%s\n", compval.intval, compval.textval.arr);
}

EXEC SQL CLOSE cur1;
</pre><p>

     Although a structure is used in the <code class="command">FETCH</code>
     command, the attribute names in the <code class="command">SELECT</code>
     clause are specified one by one.  This can be enhanced by using
     a <code class="literal">*</code> to ask for all attributes of the composite
     type value.
</p><pre class="programlisting">
...
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).* FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    /* Put all values in the SELECT list into one structure. */
    EXEC SQL FETCH FROM cur1 INTO :compval;

    printf("intval=%d, textval=%s\n", compval.intval, compval.textval.arr);
}
...
</pre><p>
     This way, composite types can be mapped into structures almost
     seamlessly, even though ECPG does not understand the composite
     type itself.
    </p><p>
     Finally, it is also possible to store composite type values in
     their external string representation in host variables of
     type <code class="type">char[]</code> or <code class="type">VARCHAR[]</code>.  But that
     way, it is not easily possible to access the fields of the value
     from the host program.
    </p></div><div class="sect3" id="id-1.7.5.10.8.5"><div class="titlepage"><div><div><h4 class="title">36.4.5.3. User-defined Base Types</h4></div></div></div><p>
     New user-defined base types are not directly supported by ECPG.
     You can use the external string representation and host variables
     of type <code class="type">char[]</code> or <code class="type">VARCHAR[]</code>, and this
     solution is indeed appropriate and sufficient for many types.
    </p><p>
     Here is an example using the data type <code class="type">complex</code> from
     the example in <a class="xref" href="xtypes.html" title="38.12. User-defined Types">Section 38.12</a>.  The external string
     representation of that type is <code class="literal">(%f,%f)</code>,
     which is defined in the
     functions <code class="function">complex_in()</code>
     and <code class="function">complex_out()</code> functions
     in <a class="xref" href="xtypes.html" title="38.12. User-defined Types">Section 38.12</a>.  The following example inserts the
     complex type values <code class="literal">(1,1)</code>
     and <code class="literal">(3,3)</code> into the
     columns <code class="literal">a</code> and <code class="literal">b</code>, and select
     them from the table after that.

</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
    varchar a[64];
    varchar b[64];
EXEC SQL END DECLARE SECTION;

    EXEC SQL INSERT INTO test_complex VALUES ('(1,1)', '(3,3)');

    EXEC SQL DECLARE cur1 CURSOR FOR SELECT a, b FROM test_complex;
    EXEC SQL OPEN cur1;

    EXEC SQL WHENEVER NOT FOUND DO BREAK;

    while (1)
    {
        EXEC SQL FETCH FROM cur1 INTO :a, :b;
        printf("a=%s, b=%s\n", a.arr, b.arr);
    }

    EXEC SQL CLOSE cur1;
</pre><p>

     This example shows following result:
</p><pre class="screen">
a=(1,1), b=(3,3)
</pre><p>
   </p><p>
     Another workaround is avoiding the direct use of the user-defined
     types in ECPG and instead create a function or cast that converts
     between the user-defined type and a primitive type that ECPG can
     handle.  Note, however, that type casts, especially implicit
     ones, should be introduced into the type system very carefully.
    </p><p>
     For example,
</p><pre class="programlisting">
CREATE FUNCTION create_complex(r double, i double) RETURNS complex
LANGUAGE SQL
IMMUTABLE
AS $$ SELECT $1 * complex '(1,0')' + $2 * complex '(0,1)' $$;
</pre><p>
    After this definition, the following
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
double a, b, c, d;
EXEC SQL END DECLARE SECTION;

a = 1;
b = 2;
c = 3;
d = 4;

EXEC SQL INSERT INTO test_complex VALUES (create_complex(:a, :b), create_complex(:c, :d));
</pre><p>
    has the same effect as
</p><pre class="programlisting">
EXEC SQL INSERT INTO test_complex VALUES ('(1,2)', '(3,4)');
</pre><p>
    </p></div></div><div class="sect2" id="ECPG-INDICATORS"><div class="titlepage"><div><div><h3 class="title">36.4.6. Indicators</h3></div></div></div><p>
    The examples above do not handle null values.  In fact, the
    retrieval examples will raise an error if they fetch a null value
    from the database.  To be able to pass null values to the database
    or retrieve null values from the database, you need to append a
    second host variable specification to each host variable that
    contains data.  This second host variable is called the
    <em class="firstterm">indicator</em> and contains a flag that tells
    whether the datum is null, in which case the value of the real
    host variable is ignored.  Here is an example that handles the
    retrieval of null values correctly:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
VARCHAR val;
int val_ind;
EXEC SQL END DECLARE SECTION:

 ...

EXEC SQL SELECT b INTO :val :val_ind FROM test1;
</pre><p>
    The indicator variable <code class="varname">val_ind</code> will be zero if
    the value was not null, and it will be negative if the value was
    null.
   </p><p>
    The indicator has another function: if the indicator value is
    positive, it means that the value is not null, but it was
    truncated when it was stored in the host variable.
   </p><p>
    If the argument <code class="literal">-r no_indicator</code> is passed to
    the preprocessor <code class="command">ecpg</code>, it works in
    <span class="quote">“<span class="quote">no-indicator</span>”</span> mode. In no-indicator mode, if no
    indicator variable is specified, null values are signaled (on
    input and output) for character string types as empty string and
    for integer types as the lowest possible value for type (for
    example, <code class="symbol">INT_MIN</code> for <code class="type">int</code>).
   </p></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ecpg-commands.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="ecpg.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="ecpg-dynamic.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">36.3. Running SQL Commands </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> 36.5. Dynamic SQL</td></tr></table></div></body></html>