Sophie

Sophie

distrib > Mageia > 7 > i586 > by-pkgid > 9b6cc37ce608401d44f6535a0c7cb777 > files > 716

postgresql11-docs-11.5-1.mga7.noarch.rpm

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>65.3. Extensibility</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="spgist-builtin-opclasses.html" title="65.2. Built-in Operator Classes" /><link rel="next" href="spgist-implementation.html" title="65.4. Implementation" /></head><body><div xmlns="http://www.w3.org/TR/xhtml1/transitional" class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">65.3. Extensibility</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="spgist-builtin-opclasses.html" title="65.2. Built-in Operator Classes">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="spgist.html" title="Chapter 65. SP-GiST Indexes">Up</a></td><th width="60%" align="center">Chapter 65. SP-GiST Indexes</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 11.5 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="spgist-implementation.html" title="65.4. Implementation">Next</a></td></tr></table><hr></hr></div><div class="sect1" id="SPGIST-EXTENSIBILITY"><div class="titlepage"><div><div><h2 class="title" style="clear: both">65.3. Extensibility</h2></div></div></div><p>
  <acronym class="acronym">SP-GiST</acronym> offers an interface with a high level of
  abstraction, requiring the access method developer to implement only
  methods specific to a given data type. The <acronym class="acronym">SP-GiST</acronym> core
  is responsible for efficient disk mapping and searching the tree structure.
  It also takes care of concurrency and logging considerations.
 </p><p>
  Leaf tuples of an <acronym class="acronym">SP-GiST</acronym> tree contain values of the
  same data type as the indexed column.  Leaf tuples at the root level will
  always contain the original indexed data value, but leaf tuples at lower
  levels might contain only a compressed representation, such as a suffix.
  In that case the operator class support functions must be able to
  reconstruct the original value using information accumulated from the
  inner tuples that are passed through to reach the leaf level.
 </p><p>
  Inner tuples are more complex, since they are branching points in the
  search tree.  Each inner tuple contains a set of one or more
  <em class="firstterm">nodes</em>, which represent groups of similar leaf values.
  A node contains a downlink that leads either to another, lower-level inner
  tuple, or to a short list of leaf tuples that all lie on the same index page.
  Each node normally has a <em class="firstterm">label</em> that describes it; for example,
  in a radix tree the node label could be the next character of the string
  value.  (Alternatively, an operator class can omit the node labels, if it
  works with a fixed set of nodes for all inner tuples;
  see <a class="xref" href="spgist-implementation.html#SPGIST-NULL-LABELS" title="65.4.2. SP-GiST Without Node Labels">Section 65.4.2</a>.)
  Optionally, an inner tuple can have a <em class="firstterm">prefix</em> value
  that describes all its members.  In a radix tree this could be the common
  prefix of the represented strings.  The prefix value is not necessarily
  really a prefix, but can be any data needed by the operator class;
  for example, in a quad-tree it can store the central point that the four
  quadrants are measured with respect to.  A quad-tree inner tuple would
  then also contain four nodes corresponding to the quadrants around this
  central point.
 </p><p>
  Some tree algorithms require knowledge of level (or depth) of the current
  tuple, so the <acronym class="acronym">SP-GiST</acronym> core provides the possibility for
  operator classes to manage level counting while descending the tree.
  There is also support for incrementally reconstructing the represented
  value when that is needed, and for passing down additional data (called
  <em class="firstterm">traverse values</em>) during a tree descent.
 </p><div class="note"><h3 class="title">Note</h3><p>
   The <acronym class="acronym">SP-GiST</acronym> core code takes care of null entries.
   Although <acronym class="acronym">SP-GiST</acronym> indexes do store entries for nulls
   in indexed columns, this is hidden from the index operator class code:
   no null index entries or search conditions will ever be passed to the
   operator class methods.  (It is assumed that <acronym class="acronym">SP-GiST</acronym>
   operators are strict and so cannot succeed for null values.)  Null values
   are therefore not discussed further here.
  </p></div><p>
  There are five user-defined methods that an index operator class for
  <acronym class="acronym">SP-GiST</acronym> must provide, and one is optional.  All five
  mandatory methods follow the convention of accepting two <code class="type">internal</code>
  arguments, the first of which is a pointer to a C struct containing input
  values for the support method, while the second argument is a pointer to a
  C struct where output values must be placed.  Four of the mandatory methods just
  return <code class="type">void</code>, since all their results appear in the output struct; but
  <code class="function">leaf_consistent</code> additionally returns a <code class="type">boolean</code> result.
  The methods must not modify any fields of their input structs.  In all
  cases, the output struct is initialized to zeroes before calling the
  user-defined method.  The optional sixth method <code class="function">compress</code>
  accepts datum to be indexed as the only argument and returns a value suitable
  for physical storage in a leaf tuple.
 </p><p>
  The five mandatory user-defined methods are:
 </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><code class="function">config</code></span></dt><dd><p>
       Returns static information about the index implementation, including
       the data type OIDs of the prefix and node label data types.
      </p><p>
      The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE FUNCTION my_config(internal, internal) RETURNS void ...
</pre><p>
      The first argument is a pointer to a <code class="structname">spgConfigIn</code>
      C struct, containing input data for the function.
      The second argument is a pointer to a <code class="structname">spgConfigOut</code>
      C struct, which the function must fill with result data.
</p><pre class="programlisting">
typedef struct spgConfigIn
{
    Oid         attType;        /* Data type to be indexed */
} spgConfigIn;

typedef struct spgConfigOut
{
    Oid         prefixType;     /* Data type of inner-tuple prefixes */
    Oid         labelType;      /* Data type of inner-tuple node labels */
    Oid         leafType;       /* Data type of leaf-tuple values */
    bool        canReturnData;  /* Opclass can reconstruct original data */
    bool        longValuesOK;   /* Opclass can cope with values &gt; 1 page */
} spgConfigOut;
</pre><p>

      <code class="structfield">attType</code> is passed in order to support polymorphic
      index operator classes; for ordinary fixed-data-type operator classes, it
      will always have the same value and so can be ignored.
     </p><p>
      For operator classes that do not use prefixes,
      <code class="structfield">prefixType</code> can be set to <code class="literal">VOIDOID</code>.
      Likewise, for operator classes that do not use node labels,
      <code class="structfield">labelType</code> can be set to <code class="literal">VOIDOID</code>.
      <code class="structfield">canReturnData</code> should be set true if the operator class
      is capable of reconstructing the originally-supplied index value.
      <code class="structfield">longValuesOK</code> should be set true only when the
      <code class="structfield">attType</code> is of variable length and the operator
      class is capable of segmenting long values by repeated suffixing
      (see <a class="xref" href="spgist-implementation.html#SPGIST-LIMITS" title="65.4.1. SP-GiST Limits">Section 65.4.1</a>).
     </p><p>
      <code class="structfield">leafType</code> is typically the same as
      <code class="structfield">attType</code>.  For the reasons of backward
      compatibility, method <code class="function">config</code> can
      leave <code class="structfield">leafType</code> uninitialized; that would
      give the same effect as setting <code class="structfield">leafType</code> equal
      to <code class="structfield">attType</code>.  When <code class="structfield">attType</code>
      and <code class="structfield">leafType</code> are different, then optional
      method <code class="function">compress</code> must be provided.
      Method <code class="function">compress</code> is responsible
      for transformation of datums to be indexed from <code class="structfield">attType</code>
      to <code class="structfield">leafType</code>.
      Note: both consistent functions will get <code class="structfield">scankeys</code>
      unchanged, without transformation using <code class="function">compress</code>.
     </p></dd><dt><span class="term"><code class="function">choose</code></span></dt><dd><p>
        Chooses a method for inserting a new value into an inner tuple.
      </p><p>
      The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE FUNCTION my_choose(internal, internal) RETURNS void ...
</pre><p>
      The first argument is a pointer to a <code class="structname">spgChooseIn</code>
      C struct, containing input data for the function.
      The second argument is a pointer to a <code class="structname">spgChooseOut</code>
      C struct, which the function must fill with result data.
</p><pre class="programlisting">
typedef struct spgChooseIn
{
    Datum       datum;          /* original datum to be indexed */
    Datum       leafDatum;      /* current datum to be stored at leaf */
    int         level;          /* current level (counting from zero) */

    /* Data from current inner tuple */
    bool        allTheSame;     /* tuple is marked all-the-same? */
    bool        hasPrefix;      /* tuple has a prefix? */
    Datum       prefixDatum;    /* if so, the prefix value */
    int         nNodes;         /* number of nodes in the inner tuple */
    Datum      *nodeLabels;     /* node label values (NULL if none) */
} spgChooseIn;

typedef enum spgChooseResultType
{
    spgMatchNode = 1,           /* descend into existing node */
    spgAddNode,                 /* add a node to the inner tuple */
    spgSplitTuple               /* split inner tuple (change its prefix) */
} spgChooseResultType;

typedef struct spgChooseOut
{
    spgChooseResultType resultType;     /* action code, see above */
    union
    {
        struct                  /* results for spgMatchNode */
        {
            int         nodeN;      /* descend to this node (index from 0) */
            int         levelAdd;   /* increment level by this much */
            Datum       restDatum;  /* new leaf datum */
        }           matchNode;
        struct                  /* results for spgAddNode */
        {
            Datum       nodeLabel;  /* new node's label */
            int         nodeN;      /* where to insert it (index from 0) */
        }           addNode;
        struct                  /* results for spgSplitTuple */
        {
            /* Info to form new upper-level inner tuple with one child tuple */
            bool        prefixHasPrefix;    /* tuple should have a prefix? */
            Datum       prefixPrefixDatum;  /* if so, its value */
            int         prefixNNodes;       /* number of nodes */
            Datum      *prefixNodeLabels;   /* their labels (or NULL for
                                             * no labels) */
            int         childNodeN;         /* which node gets child tuple */

            /* Info to form new lower-level inner tuple with all old nodes */
            bool        postfixHasPrefix;   /* tuple should have a prefix? */
            Datum       postfixPrefixDatum; /* if so, its value */
        }           splitTuple;
    }           result;
} spgChooseOut;
</pre><p>

       <code class="structfield">datum</code> is the original datum of
       <code class="structname">spgConfigIn</code>.<code class="structfield">attType</code>
       type that was to be inserted into the index.
       <code class="structfield">leafDatum</code> is a value of
       <code class="structname">spgConfigOut</code>.<code class="structfield">leafType</code>
       type, which is initially a result of method
       <code class="function">compress</code> applied to <code class="structfield">datum</code>
       when method <code class="function">compress</code> is provided, or the same value as
       <code class="structfield">datum</code> otherwise.
       <code class="structfield">leafDatum</code> can change at lower levels of the tree
       if the <code class="function">choose</code> or <code class="function">picksplit</code>
       methods change it.  When the insertion search reaches a leaf page,
       the current value of <code class="structfield">leafDatum</code> is what will be stored
       in the newly created leaf tuple.
       <code class="structfield">level</code> is the current inner tuple's level, starting at
       zero for the root level.
       <code class="structfield">allTheSame</code> is true if the current inner tuple is
       marked as containing multiple equivalent nodes
       (see <a class="xref" href="spgist-implementation.html#SPGIST-ALL-THE-SAME" title="65.4.3. “All-the-same” Inner Tuples">Section 65.4.3</a>).
       <code class="structfield">hasPrefix</code> is true if the current inner tuple contains
       a prefix; if so,
       <code class="structfield">prefixDatum</code> is its value.
       <code class="structfield">nNodes</code> is the number of child nodes contained in the
       inner tuple, and
       <code class="structfield">nodeLabels</code> is an array of their label values, or
       NULL if there are no labels.
      </p><p>
       The <code class="function">choose</code> function can determine either that
       the new value matches one of the existing child nodes, or that a new
       child node must be added, or that the new value is inconsistent with
       the tuple prefix and so the inner tuple must be split to create a
       less restrictive prefix.
      </p><p>
       If the new value matches one of the existing child nodes,
       set <code class="structfield">resultType</code> to <code class="literal">spgMatchNode</code>.
       Set <code class="structfield">nodeN</code> to the index (from zero) of that node in
       the node array.
       Set <code class="structfield">levelAdd</code> to the increment in
       <code class="structfield">level</code> caused by descending through that node,
       or leave it as zero if the operator class does not use levels.
       Set <code class="structfield">restDatum</code> to equal <code class="structfield">leafDatum</code>
       if the operator class does not modify datums from one level to the
       next, or otherwise set it to the modified value to be used as
       <code class="structfield">leafDatum</code> at the next level.
      </p><p>
       If a new child node must be added,
       set <code class="structfield">resultType</code> to <code class="literal">spgAddNode</code>.
       Set <code class="structfield">nodeLabel</code> to the label to be used for the new
       node, and set <code class="structfield">nodeN</code> to the index (from zero) at which
       to insert the node in the node array.
       After the node has been added, the <code class="function">choose</code>
       function will be called again with the modified inner tuple;
       that call should result in an <code class="literal">spgMatchNode</code> result.
      </p><p>
       If the new value is inconsistent with the tuple prefix,
       set <code class="structfield">resultType</code> to <code class="literal">spgSplitTuple</code>.
       This action moves all the existing nodes into a new lower-level
       inner tuple, and replaces the existing inner tuple with a tuple
       having a single downlink pointing to the new lower-level inner tuple.
       Set <code class="structfield">prefixHasPrefix</code> to indicate whether the new
       upper tuple should have a prefix, and if so set
       <code class="structfield">prefixPrefixDatum</code> to the prefix value.  This new
       prefix value must be sufficiently less restrictive than the original
       to accept the new value to be indexed.
       Set <code class="structfield">prefixNNodes</code> to the number of nodes needed in the
       new tuple, and set <code class="structfield">prefixNodeLabels</code> to a palloc'd array
       holding their labels, or to NULL if node labels are not required.
       Note that the total size of the new upper tuple must be no more
       than the total size of the tuple it is replacing; this constrains
       the lengths of the new prefix and new labels.
       Set <code class="structfield">childNodeN</code> to the index (from zero) of the node
       that will downlink to the new lower-level inner tuple.
       Set <code class="structfield">postfixHasPrefix</code> to indicate whether the new
       lower-level inner tuple should have a prefix, and if so set
       <code class="structfield">postfixPrefixDatum</code> to the prefix value.  The
       combination of these two prefixes and the downlink node's label
       (if any) must have the same meaning as the original prefix, because
       there is no opportunity to alter the node labels that are moved to
       the new lower-level tuple, nor to change any child index entries.
       After the node has been split, the <code class="function">choose</code>
       function will be called again with the replacement inner tuple.
       That call may return an <code class="literal">spgAddNode</code> result, if no suitable
       node was created by the <code class="literal">spgSplitTuple</code> action.  Eventually
       <code class="function">choose</code> must return <code class="literal">spgMatchNode</code> to
       allow the insertion to descend to the next level.
      </p></dd><dt><span class="term"><code class="function">picksplit</code></span></dt><dd><p>
       Decides how to create a new inner tuple over a set of leaf tuples.
      </p><p>
        The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE FUNCTION my_picksplit(internal, internal) RETURNS void ...
</pre><p>
      The first argument is a pointer to a <code class="structname">spgPickSplitIn</code>
      C struct, containing input data for the function.
      The second argument is a pointer to a <code class="structname">spgPickSplitOut</code>
      C struct, which the function must fill with result data.
</p><pre class="programlisting">
typedef struct spgPickSplitIn
{
    int         nTuples;        /* number of leaf tuples */
    Datum      *datums;         /* their datums (array of length nTuples) */
    int         level;          /* current level (counting from zero) */
} spgPickSplitIn;

typedef struct spgPickSplitOut
{
    bool        hasPrefix;      /* new inner tuple should have a prefix? */
    Datum       prefixDatum;    /* if so, its value */

    int         nNodes;         /* number of nodes for new inner tuple */
    Datum      *nodeLabels;     /* their labels (or NULL for no labels) */

    int        *mapTuplesToNodes;   /* node index for each leaf tuple */
    Datum      *leafTupleDatums;    /* datum to store in each new leaf tuple */
} spgPickSplitOut;
</pre><p>

       <code class="structfield">nTuples</code> is the number of leaf tuples provided.
       <code class="structfield">datums</code> is an array of their datum values of
       <code class="structname">spgConfigOut</code>.<code class="structfield">leafType</code>
       type.
       <code class="structfield">level</code> is the current level that all the leaf tuples
       share, which will become the level of the new inner tuple.
      </p><p>
       Set <code class="structfield">hasPrefix</code> to indicate whether the new inner
       tuple should have a prefix, and if so set
       <code class="structfield">prefixDatum</code> to the prefix value.
       Set <code class="structfield">nNodes</code> to indicate the number of nodes that
       the new inner tuple will contain, and
       set <code class="structfield">nodeLabels</code> to an array of their label values,
       or to NULL if node labels are not required.
       Set <code class="structfield">mapTuplesToNodes</code> to an array that gives the index
       (from zero) of the node that each leaf tuple should be assigned to.
       Set <code class="structfield">leafTupleDatums</code> to an array of the values to
       be stored in the new leaf tuples (these will be the same as the
       input <code class="structfield">datums</code> if the operator class does not modify
       datums from one level to the next).
       Note that the <code class="function">picksplit</code> function is
       responsible for palloc'ing the
       <code class="structfield">nodeLabels</code>, <code class="structfield">mapTuplesToNodes</code> and
       <code class="structfield">leafTupleDatums</code> arrays.
      </p><p>
       If more than one leaf tuple is supplied, it is expected that the
       <code class="function">picksplit</code> function will classify them into more than
       one node; otherwise it is not possible to split the leaf tuples
       across multiple pages, which is the ultimate purpose of this
       operation.  Therefore, if the <code class="function">picksplit</code> function
       ends up placing all the leaf tuples in the same node, the core
       SP-GiST code will override that decision and generate an inner
       tuple in which the leaf tuples are assigned at random to several
       identically-labeled nodes.  Such a tuple is marked
       <code class="literal">allTheSame</code> to signify that this has happened.  The
       <code class="function">choose</code> and <code class="function">inner_consistent</code> functions
       must take suitable care with such inner tuples.
       See <a class="xref" href="spgist-implementation.html#SPGIST-ALL-THE-SAME" title="65.4.3. “All-the-same” Inner Tuples">Section 65.4.3</a> for more information.
      </p><p>
       <code class="function">picksplit</code> can be applied to a single leaf tuple only
       in the case that the <code class="function">config</code> function set
       <code class="structfield">longValuesOK</code> to true and a larger-than-a-page input
       value has been supplied.  In this case the point of the operation is
       to strip off a prefix and produce a new, shorter leaf datum value.
       The call will be repeated until a leaf datum short enough to fit on
       a page has been produced.  See <a class="xref" href="spgist-implementation.html#SPGIST-LIMITS" title="65.4.1. SP-GiST Limits">Section 65.4.1</a> for
       more information.
      </p></dd><dt><span class="term"><code class="function">inner_consistent</code></span></dt><dd><p>
       Returns set of nodes (branches) to follow during tree search.
      </p><p>
       The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE FUNCTION my_inner_consistent(internal, internal) RETURNS void ...
</pre><p>
      The first argument is a pointer to a <code class="structname">spgInnerConsistentIn</code>
      C struct, containing input data for the function.
      The second argument is a pointer to a <code class="structname">spgInnerConsistentOut</code>
      C struct, which the function must fill with result data.

</p><pre class="programlisting">
typedef struct spgInnerConsistentIn
{
    ScanKey     scankeys;       /* array of operators and comparison values */
    int         nkeys;          /* length of array */

    Datum       reconstructedValue;     /* value reconstructed at parent */
    void       *traversalValue; /* opclass-specific traverse value */
    MemoryContext traversalMemoryContext;   /* put new traverse values here */
    int         level;          /* current level (counting from zero) */
    bool        returnData;     /* original data must be returned? */

    /* Data from current inner tuple */
    bool        allTheSame;     /* tuple is marked all-the-same? */
    bool        hasPrefix;      /* tuple has a prefix? */
    Datum       prefixDatum;    /* if so, the prefix value */
    int         nNodes;         /* number of nodes in the inner tuple */
    Datum      *nodeLabels;     /* node label values (NULL if none) */
} spgInnerConsistentIn;

typedef struct spgInnerConsistentOut
{
    int         nNodes;         /* number of child nodes to be visited */
    int        *nodeNumbers;    /* their indexes in the node array */
    int        *levelAdds;      /* increment level by this much for each */
    Datum      *reconstructedValues;    /* associated reconstructed values */
    void      **traversalValues;        /* opclass-specific traverse values */
} spgInnerConsistentOut;
</pre><p>

       The array <code class="structfield">scankeys</code>, of length <code class="structfield">nkeys</code>,
       describes the index search condition(s).  These conditions are
       combined with AND — only index entries that satisfy all of
       them are interesting.  (Note that <code class="structfield">nkeys</code> = 0 implies
       that all index entries satisfy the query.)  Usually the consistent
       function only cares about the <code class="structfield">sk_strategy</code> and
       <code class="structfield">sk_argument</code> fields of each array entry, which
       respectively give the indexable operator and comparison value.
       In particular it is not necessary to check <code class="structfield">sk_flags</code> to
       see if the comparison value is NULL, because the SP-GiST core code
       will filter out such conditions.
       <code class="structfield">reconstructedValue</code> is the value reconstructed for the
       parent tuple; it is <code class="literal">(Datum) 0</code> at the root level or if the
       <code class="function">inner_consistent</code> function did not provide a value at the
       parent level. <code class="structfield">reconstructedValue</code> is always of
       <code class="structname">spgConfigOut</code>.<code class="structfield">leafType</code> type.
       <code class="structfield">traversalValue</code> is a pointer to any traverse data
       passed down from the previous call of <code class="function">inner_consistent</code>
       on the parent index tuple, or NULL at the root level.
       <code class="structfield">traversalMemoryContext</code> is the memory context in which
       to store output traverse values (see below).
       <code class="structfield">level</code> is the current inner tuple's level, starting at
       zero for the root level.
       <code class="structfield">returnData</code> is <code class="literal">true</code> if reconstructed data is
       required for this query; this will only be so if the
       <code class="function">config</code> function asserted <code class="structfield">canReturnData</code>.
       <code class="structfield">allTheSame</code> is true if the current inner tuple is
       marked <span class="quote">“<span class="quote">all-the-same</span>”</span>; in this case all the nodes have the
       same label (if any) and so either all or none of them match the query
       (see <a class="xref" href="spgist-implementation.html#SPGIST-ALL-THE-SAME" title="65.4.3. “All-the-same” Inner Tuples">Section 65.4.3</a>).
       <code class="structfield">hasPrefix</code> is true if the current inner tuple contains
       a prefix; if so,
       <code class="structfield">prefixDatum</code> is its value.
       <code class="structfield">nNodes</code> is the number of child nodes contained in the
       inner tuple, and
       <code class="structfield">nodeLabels</code> is an array of their label values, or
       NULL if the nodes do not have labels.
      </p><p>
       <code class="structfield">nNodes</code> must be set to the number of child nodes that
       need to be visited by the search, and
       <code class="structfield">nodeNumbers</code> must be set to an array of their indexes.
       If the operator class keeps track of levels, set
       <code class="structfield">levelAdds</code> to an array of the level increments
       required when descending to each node to be visited.  (Often these
       increments will be the same for all the nodes, but that's not
       necessarily so, so an array is used.)
       If value reconstruction is needed, set
       <code class="structfield">reconstructedValues</code> to an array of the values
       of <code class="structname">spgConfigOut</code>.<code class="structfield">leafType</code> type
       reconstructed for each child node to be visited; otherwise, leave
       <code class="structfield">reconstructedValues</code> as NULL.
       If it is desired to pass down additional out-of-band information
       (<span class="quote">“<span class="quote">traverse values</span>”</span>) to lower levels of the tree search,
       set <code class="structfield">traversalValues</code> to an array of the appropriate
       traverse values, one for each child node to be visited; otherwise,
       leave <code class="structfield">traversalValues</code> as NULL.
       Note that the <code class="function">inner_consistent</code> function is
       responsible for palloc'ing the
       <code class="structfield">nodeNumbers</code>, <code class="structfield">levelAdds</code>,
       <code class="structfield">reconstructedValues</code>, and
       <code class="structfield">traversalValues</code> arrays in the current memory context.
       However, any output traverse values pointed to by
       the <code class="structfield">traversalValues</code> array should be allocated
       in <code class="structfield">traversalMemoryContext</code>.
       Each traverse value must be a single palloc'd chunk.
      </p></dd><dt><span class="term"><code class="function">leaf_consistent</code></span></dt><dd><p>
       Returns true if a leaf tuple satisfies a query.
      </p><p>
       The <acronym class="acronym">SQL</acronym> declaration of the function must look like this:
</p><pre class="programlisting">
CREATE FUNCTION my_leaf_consistent(internal, internal) RETURNS bool ...
</pre><p>
      The first argument is a pointer to a <code class="structname">spgLeafConsistentIn</code>
      C struct, containing input data for the function.
      The second argument is a pointer to a <code class="structname">spgLeafConsistentOut</code>
      C struct, which the function must fill with result data.
</p><pre class="programlisting">
typedef struct spgLeafConsistentIn
{
    ScanKey     scankeys;       /* array of operators and comparison values */
    int         nkeys;          /* length of array */

    Datum       reconstructedValue;     /* value reconstructed at parent */
    void       *traversalValue; /* opclass-specific traverse value */
    int         level;          /* current level (counting from zero) */
    bool        returnData;     /* original data must be returned? */

    Datum       leafDatum;      /* datum in leaf tuple */
} spgLeafConsistentIn;

typedef struct spgLeafConsistentOut
{
    Datum       leafValue;      /* reconstructed original data, if any */
    bool        recheck;        /* set true if operator must be rechecked */
} spgLeafConsistentOut;
</pre><p>

       The array <code class="structfield">scankeys</code>, of length <code class="structfield">nkeys</code>,
       describes the index search condition(s).  These conditions are
       combined with AND — only index entries that satisfy all of
       them satisfy the query.  (Note that <code class="structfield">nkeys</code> = 0 implies
       that all index entries satisfy the query.)  Usually the consistent
       function only cares about the <code class="structfield">sk_strategy</code> and
       <code class="structfield">sk_argument</code> fields of each array entry, which
       respectively give the indexable operator and comparison value.
       In particular it is not necessary to check <code class="structfield">sk_flags</code> to
       see if the comparison value is NULL, because the SP-GiST core code
       will filter out such conditions.
       <code class="structfield">reconstructedValue</code> is the value reconstructed for the
       parent tuple; it is <code class="literal">(Datum) 0</code> at the root level or if the
       <code class="function">inner_consistent</code> function did not provide a value at the
       parent level. <code class="structfield">reconstructedValue</code> is always of
       <code class="structname">spgConfigOut</code>.<code class="structfield">leafType</code> type.
       <code class="structfield">traversalValue</code> is a pointer to any traverse data
       passed down from the previous call of <code class="function">inner_consistent</code>
       on the parent index tuple, or NULL at the root level.
       <code class="structfield">level</code> is the current leaf tuple's level, starting at
       zero for the root level.
       <code class="structfield">returnData</code> is <code class="literal">true</code> if reconstructed data is
       required for this query; this will only be so if the
       <code class="function">config</code> function asserted <code class="structfield">canReturnData</code>.
       <code class="structfield">leafDatum</code> is the key value of
       <code class="structname">spgConfigOut</code>.<code class="structfield">leafType</code>
       stored in the current leaf tuple.
      </p><p>
       The function must return <code class="literal">true</code> if the leaf tuple matches the
       query, or <code class="literal">false</code> if not.  In the <code class="literal">true</code> case,
       if <code class="structfield">returnData</code> is <code class="literal">true</code> then
       <code class="structfield">leafValue</code> must be set to the value of
       <code class="structname">spgConfigIn</code>.<code class="structfield">attType</code> type
       originally supplied to be indexed for this leaf tuple.  Also,
       <code class="structfield">recheck</code> may be set to <code class="literal">true</code> if the match
       is uncertain and so the operator(s) must be re-applied to the actual
       heap tuple to verify the match.
      </p></dd></dl></div><p>
  The optional user-defined method is:
 </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><code class="function">Datum compress(Datum in)</code></span></dt><dd><p>
       Converts the data item into a format suitable for physical storage in
       a leaf tuple of index page.  It accepts
       <code class="structname">spgConfigIn</code>.<code class="structfield">attType</code>
       value and returns
       <code class="structname">spgConfigOut</code>.<code class="structfield">leafType</code>
       value.  Output value should not be toasted.
      </p></dd></dl></div><p>
   All the SP-GiST support methods are normally called in a short-lived
   memory context; that is, <code class="varname">CurrentMemoryContext</code> will be reset
   after processing of each tuple.  It is therefore not very important to
   worry about pfree'ing everything you palloc.  (The <code class="function">config</code>
   method is an exception: it should try to avoid leaking memory.  But
   usually the <code class="function">config</code> method need do nothing but assign
   constants into the passed parameter struct.)
  </p><p>
   If the indexed column is of a collatable data type, the index collation
   will be passed to all the support methods, using the standard
   <code class="function">PG_GET_COLLATION()</code> mechanism.
  </p></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="spgist-builtin-opclasses.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="spgist.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="spgist-implementation.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">65.2. Built-in Operator Classes </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> 65.4. Implementation</td></tr></table></div></body></html>