Sophie

Sophie

distrib > Mageia > 7 > i586 > media > core-updates > by-pkgid > d635a8cd705396ade48f1d2b830a115d > files > 2013

libllvm-devel-8.0.0-1.1.mga7.i586.rpm



<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="X-UA-Compatible" content="IE=Edge" />
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    <title>Global Instruction Selection &#8212; LLVM 8 documentation</title>
    <link rel="stylesheet" href="_static/llvm-theme.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    <script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
    <script type="text/javascript" src="_static/jquery.js"></script>
    <script type="text/javascript" src="_static/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <script type="text/javascript" src="_static/language_data.js"></script>
    <link rel="index" title="Index" href="genindex.html" />
    <link rel="search" title="Search" href="search.html" />
    <link rel="next" title="XRay Instrumentation" href="XRay.html" />
    <link rel="prev" title="Coroutines in LLVM" href="Coroutines.html" />
<style type="text/css">
  table.right { float: right; margin-left: 20px; }
  table.right td { border: 1px solid #ccc; }
</style>

  </head><body>
<div class="logo">
  <a href="index.html">
    <img src="_static/logo.png"
         alt="LLVM Logo" width="250" height="88"/></a>
</div>

    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="XRay.html" title="XRay Instrumentation"
             accesskey="N">next</a> |</li>
        <li class="right" >
          <a href="Coroutines.html" title="Coroutines in LLVM"
             accesskey="P">previous</a> |</li>
  <li><a href="http://llvm.org/">LLVM Home</a>&nbsp;|&nbsp;</li>
  <li><a href="index.html">Documentation</a>&raquo;</li>
 
      </ul>
    </div>


    <div class="document">
      <div class="documentwrapper">
          <div class="body" role="main">
            
  <div class="section" id="global-instruction-selection">
<h1>Global Instruction Selection<a class="headerlink" href="#global-instruction-selection" title="Permalink to this headline">¶</a></h1>
<div class="contents local topic" id="contents">
<ul class="simple">
<li><a class="reference internal" href="#introduction" id="id12">Introduction</a></li>
<li><a class="reference internal" href="#generic-machine-ir" id="id13">Generic Machine IR</a></li>
<li><a class="reference internal" href="#core-pipeline" id="id14">Core Pipeline</a></li>
<li><a class="reference internal" href="#maintainability" id="id15">Maintainability</a></li>
<li><a class="reference internal" href="#progress-and-future-work" id="id16">Progress and Future Work</a></li>
<li><a class="reference internal" href="#porting-globalisel-to-a-new-target" id="id17">Porting GlobalISel to A New Target</a></li>
<li><a class="reference internal" href="#resources" id="id18">Resources</a></li>
</ul>
</div>
<div class="admonition warning">
<p class="first admonition-title">Warning</p>
<p class="last">This document is a work in progress.  It reflects the current state of the
implementation, as well as open design and implementation issues.</p>
</div>
<div class="section" id="introduction">
<h2><a class="toc-backref" href="#id12">Introduction</a><a class="headerlink" href="#introduction" title="Permalink to this headline">¶</a></h2>
<p>GlobalISel is a framework that provides a set of reusable passes and utilities
for instruction selection — translation from LLVM IR to target-specific
Machine IR (MIR).</p>
<p>GlobalISel is intended to be a replacement for SelectionDAG and FastISel, to
solve three major problems:</p>
<ul>
<li><p class="first"><strong>Performance</strong> — SelectionDAG introduces a dedicated intermediate
representation, which has a compile-time cost.</p>
<p>GlobalISel directly operates on the post-isel representation used by the
rest of the code generator, MIR.
It does require extensions to that representation to support arbitrary
incoming IR: <a class="reference internal" href="#gmir"><span class="std std-ref">Generic Machine IR</span></a>.</p>
</li>
<li><p class="first"><strong>Granularity</strong> — SelectionDAG and FastISel operate on individual basic
blocks, losing some global optimization opportunities.</p>
<p>GlobalISel operates on the whole function.</p>
</li>
<li><p class="first"><strong>Modularity</strong> — SelectionDAG and FastISel are radically different and share
very little code.</p>
<p>GlobalISel is built in a way that enables code reuse. For instance, both the
optimized and fast selectors share the <a class="reference internal" href="#pipeline"><span class="std std-ref">Core Pipeline</span></a>, and targets can
configure that pipeline to better suit their needs.</p>
</li>
</ul>
</div>
<div class="section" id="generic-machine-ir">
<span id="gmir"></span><h2><a class="toc-backref" href="#id13">Generic Machine IR</a><a class="headerlink" href="#generic-machine-ir" title="Permalink to this headline">¶</a></h2>
<p>Machine IR operates on physical registers, register classes, and (mostly)
target-specific instructions.</p>
<p>To bridge the gap with LLVM IR, GlobalISel introduces “generic” extensions to
Machine IR:</p>
<div class="contents local topic" id="id1">
<ul class="simple">
<li><a class="reference internal" href="#generic-instructions" id="id19">Generic Instructions</a></li>
<li><a class="reference internal" href="#generic-virtual-registers" id="id20">Generic Virtual Registers</a></li>
<li><a class="reference internal" href="#register-bank" id="id21">Register Bank</a></li>
<li><a class="reference internal" href="#low-level-type" id="id22">Low Level Type</a></li>
</ul>
</div>
<p><code class="docutils literal notranslate"><span class="pre">NOTE</span></code>:
The generic MIR (GMIR) representation still contains references to IR
constructs (such as <code class="docutils literal notranslate"><span class="pre">GlobalValue</span></code>).  Removing those should let us write more
accurate tests, or delete IR after building the initial MIR.  However, it is
not part of the GlobalISel effort.</p>
<div class="section" id="generic-instructions">
<span id="gmir-instructions"></span><h3><a class="toc-backref" href="#id19">Generic Instructions</a><a class="headerlink" href="#generic-instructions" title="Permalink to this headline">¶</a></h3>
<p>The main addition is support for pre-isel generic machine instructions (e.g.,
<code class="docutils literal notranslate"><span class="pre">G_ADD</span></code>).  Like other target-independent instructions (e.g., <code class="docutils literal notranslate"><span class="pre">COPY</span></code> or
<code class="docutils literal notranslate"><span class="pre">PHI</span></code>), these are available on all targets.</p>
<p><code class="docutils literal notranslate"><span class="pre">TODO</span></code>:
While we’re progressively adding instructions, one kind in particular exposes
interesting problems: compares and how to represent condition codes.
Some targets (x86, ARM) have generic comparisons setting multiple flags,
which are then used by predicated variants.
Others (IR) specify the predicate in the comparison and users just get a single
bit.  SelectionDAG uses SETCC/CONDBR vs BR_CC (and similar for select) to
represent this.</p>
<p>The <code class="docutils literal notranslate"><span class="pre">MachineIRBuilder</span></code> class wraps the <code class="docutils literal notranslate"><span class="pre">MachineInstrBuilder</span></code> and provides
a convenient way to create these generic instructions.</p>
</div>
<div class="section" id="generic-virtual-registers">
<span id="gmir-gvregs"></span><h3><a class="toc-backref" href="#id20">Generic Virtual Registers</a><a class="headerlink" href="#generic-virtual-registers" title="Permalink to this headline">¶</a></h3>
<p>Generic instructions operate on a new kind of register: “generic” virtual
registers.  As opposed to non-generic vregs, they are not assigned a Register
Class.  Instead, generic vregs have a <a class="reference internal" href="#gmir-llt"><span class="std std-ref">Low Level Type</span></a>, and can be assigned
a <a class="reference internal" href="#gmir-regbank"><span class="std std-ref">Register Bank</span></a>.</p>
<p><code class="docutils literal notranslate"><span class="pre">MachineRegisterInfo</span></code> tracks the same information that it does for
non-generic vregs (e.g., use-def chains).  Additionally, it also tracks the
<a class="reference internal" href="#gmir-llt"><span class="std std-ref">Low Level Type</span></a> of the register, and, instead of the <code class="docutils literal notranslate"><span class="pre">TargetRegisterClass</span></code>,
its <a class="reference internal" href="#gmir-regbank"><span class="std std-ref">Register Bank</span></a>, if any.</p>
<p>For simplicity, most generic instructions only accept generic vregs:</p>
<ul class="simple">
<li>instead of immediates, they use a gvreg defined by an instruction
materializing the immediate value (see <a class="reference internal" href="#irtranslator-constants"><span class="std std-ref">Constant Lowering</span></a>).</li>
<li>instead of physical register, they use a gvreg defined by a <code class="docutils literal notranslate"><span class="pre">COPY</span></code>.</li>
</ul>
<p><code class="docutils literal notranslate"><span class="pre">NOTE</span></code>:
We started with an alternative representation, where MRI tracks a size for
each gvreg, and instructions have lists of types.
That had two flaws: the type and size are redundant, and there was no generic
way of getting a given operand’s type (as there was no 1:1 mapping between
instruction types and operands).
We considered putting the type in some variant of MCInstrDesc instead:
See <a class="reference external" href="http://llvm.org/PR26576">PR26576</a>: [GlobalISel] Generic MachineInstrs
need a type but this increases the memory footprint of the related objects</p>
</div>
<div class="section" id="register-bank">
<span id="gmir-regbank"></span><h3><a class="toc-backref" href="#id21">Register Bank</a><a class="headerlink" href="#register-bank" title="Permalink to this headline">¶</a></h3>
<p>A Register Bank is a set of register classes defined by the target.
A bank has a size, which is the maximum store size of all covered classes.</p>
<p>In general, cross-class copies inside a bank are expected to be cheaper than
copies across banks.  They are also coalesceable by the register coalescer,
whereas cross-bank copies are not.</p>
<p>Also, equivalent operations can be performed on different banks using different
instructions.</p>
<p>For example, X86 can be seen as having 3 main banks: general-purpose, x87, and
vector (which could be further split into a bank per domain for single vs
double precision instructions).</p>
<p>Register banks are described by a target-provided API,
<a class="reference internal" href="#api-registerbankinfo"><span class="std std-ref">RegisterBankInfo</span></a>.</p>
</div>
<div class="section" id="low-level-type">
<span id="gmir-llt"></span><h3><a class="toc-backref" href="#id22">Low Level Type</a><a class="headerlink" href="#low-level-type" title="Permalink to this headline">¶</a></h3>
<p>Additionally, every generic virtual register has a type, represented by an
instance of the <code class="docutils literal notranslate"><span class="pre">LLT</span></code> class.</p>
<p>Like <code class="docutils literal notranslate"><span class="pre">EVT</span></code>/<code class="docutils literal notranslate"><span class="pre">MVT</span></code>/<code class="docutils literal notranslate"><span class="pre">Type</span></code>, it has no distinction between unsigned and signed
integer types.  Furthermore, it also has no distinction between integer and
floating-point types: it mainly conveys absolutely necessary information, such
as size and number of vector lanes:</p>
<ul class="simple">
<li><code class="docutils literal notranslate"><span class="pre">sN</span></code> for scalars</li>
<li><code class="docutils literal notranslate"><span class="pre">pN</span></code> for pointers</li>
<li><code class="docutils literal notranslate"><span class="pre">&lt;N</span> <span class="pre">x</span> <span class="pre">sM&gt;</span></code> for vectors</li>
<li><code class="docutils literal notranslate"><span class="pre">unsized</span></code> for labels, etc..</li>
</ul>
<p><code class="docutils literal notranslate"><span class="pre">LLT</span></code> is intended to replace the usage of <code class="docutils literal notranslate"><span class="pre">EVT</span></code> in SelectionDAG.</p>
<p>Here are some LLT examples and their <code class="docutils literal notranslate"><span class="pre">EVT</span></code> and <code class="docutils literal notranslate"><span class="pre">Type</span></code> equivalents:</p>
<blockquote>
<div><table border="1" class="docutils">
<colgroup>
<col width="22%" />
<col width="15%" />
<col width="63%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">LLT</th>
<th class="head">EVT</th>
<th class="head">IR Type</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td><code class="docutils literal notranslate"><span class="pre">s1</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">i1</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">i1</span></code></td>
</tr>
<tr class="row-odd"><td><code class="docutils literal notranslate"><span class="pre">s8</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">i8</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">i8</span></code></td>
</tr>
<tr class="row-even"><td><code class="docutils literal notranslate"><span class="pre">s32</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">i32</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">i32</span></code></td>
</tr>
<tr class="row-odd"><td><code class="docutils literal notranslate"><span class="pre">s32</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">f32</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">float</span></code></td>
</tr>
<tr class="row-even"><td><code class="docutils literal notranslate"><span class="pre">s17</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">i17</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">i17</span></code></td>
</tr>
<tr class="row-odd"><td><code class="docutils literal notranslate"><span class="pre">s16</span></code></td>
<td>N/A</td>
<td><code class="docutils literal notranslate"><span class="pre">{i8,</span> <span class="pre">i8}</span></code></td>
</tr>
<tr class="row-even"><td><code class="docutils literal notranslate"><span class="pre">s32</span></code></td>
<td>N/A</td>
<td><code class="docutils literal notranslate"><span class="pre">[4</span> <span class="pre">x</span> <span class="pre">i8]</span></code></td>
</tr>
<tr class="row-odd"><td><code class="docutils literal notranslate"><span class="pre">p0</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">iPTR</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">i8*</span></code>, <code class="docutils literal notranslate"><span class="pre">i32*</span></code>, <code class="docutils literal notranslate"><span class="pre">%opaque*</span></code></td>
</tr>
<tr class="row-even"><td><code class="docutils literal notranslate"><span class="pre">p2</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">iPTR</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">i8</span> <span class="pre">addrspace(2)*</span></code></td>
</tr>
<tr class="row-odd"><td><code class="docutils literal notranslate"><span class="pre">&lt;4</span> <span class="pre">x</span> <span class="pre">s32&gt;</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">v4f32</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">&lt;4</span> <span class="pre">x</span> <span class="pre">float&gt;</span></code></td>
</tr>
<tr class="row-even"><td><code class="docutils literal notranslate"><span class="pre">s64</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">v1f64</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">&lt;1</span> <span class="pre">x</span> <span class="pre">double&gt;</span></code></td>
</tr>
<tr class="row-odd"><td><code class="docutils literal notranslate"><span class="pre">&lt;3</span> <span class="pre">x</span> <span class="pre">s32&gt;</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">v3i32</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">&lt;3</span> <span class="pre">x</span> <span class="pre">i32&gt;</span></code></td>
</tr>
<tr class="row-even"><td><code class="docutils literal notranslate"><span class="pre">unsized</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">Other</span></code></td>
<td><code class="docutils literal notranslate"><span class="pre">label</span></code></td>
</tr>
</tbody>
</table>
</div></blockquote>
<p>Rationale: instructions already encode a specific interpretation of types
(e.g., <code class="docutils literal notranslate"><span class="pre">add</span></code> vs. <code class="docutils literal notranslate"><span class="pre">fadd</span></code>, or <code class="docutils literal notranslate"><span class="pre">sdiv</span></code> vs. <code class="docutils literal notranslate"><span class="pre">udiv</span></code>).  Also encoding that
information in the type system requires introducing bitcast with no real
advantage for the selector.</p>
<p>Pointer types are distinguished by address space.  This matches IR, as opposed
to SelectionDAG where address space is an attribute on operations.
This representation better supports pointers having different sizes depending
on their addressspace.</p>
<p><code class="docutils literal notranslate"><span class="pre">NOTE</span></code>:
Currently, LLT requires at least 2 elements in vectors, but some targets have
the concept of a ‘1-element vector’.  Representing them as their underlying
scalar type is a nice simplification.</p>
<p><code class="docutils literal notranslate"><span class="pre">TODO</span></code>:
Currently, non-generic virtual registers, defined by non-pre-isel-generic
instructions, cannot have a type, and thus cannot be used by a pre-isel generic
instruction.  Instead, they are given a type using a COPY.  We could relax that
and allow types on all vregs: this would reduce the number of MI required when
emitting target-specific MIR early in the pipeline.  This should purely be
a compile-time optimization.</p>
</div>
</div>
<div class="section" id="core-pipeline">
<span id="pipeline"></span><h2><a class="toc-backref" href="#id14">Core Pipeline</a><a class="headerlink" href="#core-pipeline" title="Permalink to this headline">¶</a></h2>
<p>There are four required passes, regardless of the optimization mode:</p>
<div class="contents local topic" id="id2">
<ul class="simple">
<li><a class="reference internal" href="#irtranslator" id="id23">IRTranslator</a><ul>
<li><a class="reference internal" href="#api-calllowering" id="id24">API: CallLowering</a></li>
<li><a class="reference internal" href="#aggregates" id="id25">Aggregates</a></li>
<li><a class="reference internal" href="#constant-lowering" id="id26">Constant Lowering</a></li>
</ul>
</li>
<li><a class="reference internal" href="#legalizer" id="id27">Legalizer</a><ul>
<li><a class="reference internal" href="#api-legalizerinfo" id="id28">API: LegalizerInfo</a></li>
<li><a class="reference internal" href="#non-power-of-2-types" id="id29">Non-power of 2 types</a></li>
<li><a class="reference internal" href="#vector-types" id="id30">Vector types</a></li>
</ul>
</li>
<li><a class="reference internal" href="#regbankselect" id="id31">RegBankSelect</a><ul>
<li><a class="reference internal" href="#api-registerbankinfo" id="id32">API: RegisterBankInfo</a></li>
<li><a class="reference internal" href="#regbankselect-modes" id="id33">RegBankSelect Modes</a></li>
</ul>
</li>
<li><a class="reference internal" href="#instructionselect" id="id34">InstructionSelect</a><ul>
<li><a class="reference internal" href="#api-instructionselector" id="id35">API: InstructionSelector</a></li>
<li><a class="reference internal" href="#selectiondag-rule-imports" id="id36">SelectionDAG Rule Imports</a></li>
<li><a class="reference internal" href="#patleaf-predicates" id="id37">PatLeaf Predicates</a></li>
<li><a class="reference internal" href="#custom-sdnodes" id="id38">Custom SDNodes</a></li>
<li><a class="reference internal" href="#complexpatterns" id="id39">ComplexPatterns</a></li>
</ul>
</li>
</ul>
</div>
<p>Additional passes can then be inserted at higher optimization levels or for
specific targets. For example, to match the current SelectionDAG set of
transformations: MachineCSE and a better MachineCombiner between every pass.</p>
<p><code class="docutils literal notranslate"><span class="pre">NOTE</span></code>:
In theory, not all passes are always necessary.
As an additional compile-time optimization, we could skip some of the passes by
setting the relevant MachineFunction properties.  For instance, if the
IRTranslator did not encounter any illegal instruction, it would set the
<code class="docutils literal notranslate"><span class="pre">legalized</span></code> property to avoid running the <a class="reference internal" href="#milegalizer"><span class="std std-ref">Legalizer</span></a>.
Similarly, we considered specializing the IRTranslator per-target to directly
emit target-specific MI.
However, we instead decided to keep the core pipeline simple, and focus on
minimizing the overhead of the passes in the no-op cases.</p>
<div class="section" id="irtranslator">
<span id="id3"></span><h3><a class="toc-backref" href="#id23">IRTranslator</a><a class="headerlink" href="#irtranslator" title="Permalink to this headline">¶</a></h3>
<p>This pass translates the input LLVM IR <code class="docutils literal notranslate"><span class="pre">Function</span></code> to a GMIR
<code class="docutils literal notranslate"><span class="pre">MachineFunction</span></code>.</p>
<p><code class="docutils literal notranslate"><span class="pre">TODO</span></code>:
This currently doesn’t support the more complex instructions, in particular
those involving control flow (<code class="docutils literal notranslate"><span class="pre">switch</span></code>, <code class="docutils literal notranslate"><span class="pre">invoke</span></code>, …).
For <code class="docutils literal notranslate"><span class="pre">switch</span></code> in particular, we can initially use the <code class="docutils literal notranslate"><span class="pre">LowerSwitch</span></code> pass.</p>
<div class="section" id="api-calllowering">
<span id="id4"></span><h4><a class="toc-backref" href="#id24">API: CallLowering</a><a class="headerlink" href="#api-calllowering" title="Permalink to this headline">¶</a></h4>
<p>The <code class="docutils literal notranslate"><span class="pre">IRTranslator</span></code> (using the <code class="docutils literal notranslate"><span class="pre">CallLowering</span></code> target-provided utility) also
implements the ABI’s calling convention by lowering calls, returns, and
arguments to the appropriate physical register usage and instruction sequences.</p>
</div>
<div class="section" id="aggregates">
<span id="irtranslator-aggregates"></span><h4><a class="toc-backref" href="#id25">Aggregates</a><a class="headerlink" href="#aggregates" title="Permalink to this headline">¶</a></h4>
<p>Aggregates are lowered to a single scalar vreg.
This differs from SelectionDAG’s multiple vregs via <code class="docutils literal notranslate"><span class="pre">GetValueVTs</span></code>.</p>
<p><code class="docutils literal notranslate"><span class="pre">TODO</span></code>:
As some of the bits are undef (padding), we should consider augmenting the
representation with additional metadata (in effect, caching computeKnownBits
information on vregs).
See <a class="reference external" href="http://llvm.org/PR26161">PR26161</a>: [GlobalISel] Value to vreg during
IR to MachineInstr translation for aggregate type</p>
</div>
<div class="section" id="constant-lowering">
<span id="irtranslator-constants"></span><h4><a class="toc-backref" href="#id26">Constant Lowering</a><a class="headerlink" href="#constant-lowering" title="Permalink to this headline">¶</a></h4>
<p>The <code class="docutils literal notranslate"><span class="pre">IRTranslator</span></code> lowers <code class="docutils literal notranslate"><span class="pre">Constant</span></code> operands into uses of gvregs defined
by <code class="docutils literal notranslate"><span class="pre">G_CONSTANT</span></code> or <code class="docutils literal notranslate"><span class="pre">G_FCONSTANT</span></code> instructions.
Currently, these instructions are always emitted in the entry basic block.
In a <code class="docutils literal notranslate"><span class="pre">MachineFunction</span></code>, each <code class="docutils literal notranslate"><span class="pre">Constant</span></code> is materialized by a single gvreg.</p>
<p>This is beneficial as it allows us to fold constants into immediate operands
during <a class="reference internal" href="#instructionselect"><span class="std std-ref">InstructionSelect</span></a>, while still avoiding redundant materializations
for expensive non-foldable constants.
However, this can lead to unnecessary spills and reloads in an -O0 pipeline, as
these vregs can have long live ranges.</p>
<p><code class="docutils literal notranslate"><span class="pre">TODO</span></code>:
We’re investigating better placement of these instructions, in fast and
optimized modes.</p>
</div>
</div>
<div class="section" id="legalizer">
<span id="milegalizer"></span><h3><a class="toc-backref" href="#id27">Legalizer</a><a class="headerlink" href="#legalizer" title="Permalink to this headline">¶</a></h3>
<p>This pass transforms the generic machine instructions such that they are legal.</p>
<p>A legal instruction is defined as:</p>
<ul class="simple">
<li><strong>selectable</strong> — the target will later be able to select it to a
target-specific (non-generic) instruction.</li>
<li>operating on <strong>vregs that can be loaded and stored</strong> – if necessary, the
target can select a <code class="docutils literal notranslate"><span class="pre">G_LOAD</span></code>/<code class="docutils literal notranslate"><span class="pre">G_STORE</span></code> of each gvreg operand.</li>
</ul>
<p>As opposed to SelectionDAG, there are no legalization phases.  In particular,
‘type’ and ‘operation’ legalization are not separate.</p>
<p>Legalization is iterative, and all state is contained in GMIR.  To maintain the
validity of the intermediate code, instructions are introduced:</p>
<ul class="simple">
<li><code class="docutils literal notranslate"><span class="pre">G_MERGE_VALUES</span></code> — concatenate multiple registers of the same
size into a single wider register.</li>
<li><code class="docutils literal notranslate"><span class="pre">G_UNMERGE_VALUES</span></code> — extract multiple registers of the same size
from a single wider register.</li>
<li><code class="docutils literal notranslate"><span class="pre">G_EXTRACT</span></code> — extract a simple register (as contiguous sequences of bits)
from a single wider register.</li>
</ul>
<p>As they are expected to be temporary byproducts of the legalization process,
they are combined at the end of the <a class="reference internal" href="#milegalizer"><span class="std std-ref">Legalizer</span></a> pass.
If any remain, they are expected to always be selectable, using loads and stores
if necessary.</p>
<div class="section" id="api-legalizerinfo">
<span id="id5"></span><h4><a class="toc-backref" href="#id28">API: LegalizerInfo</a><a class="headerlink" href="#api-legalizerinfo" title="Permalink to this headline">¶</a></h4>
<p>Currently the API is broadly similar to SelectionDAG/TargetLowering, but
extended in two ways:</p>
<ul class="simple">
<li>The set of available actions is wider, avoiding the currently very
overloaded <code class="docutils literal notranslate"><span class="pre">Expand</span></code> (which can cover everything from libcalls to
scalarization depending on the node’s opcode).</li>
<li>Since there’s no separate type legalization, independently varying
types on an instruction can have independent actions. For example a
<code class="docutils literal notranslate"><span class="pre">G_ICMP</span></code> has 2 independent types: the result and the inputs; we need
to be able to say that comparing 2 s32s is OK, but the s1 result
must be dealt with in another way.</li>
</ul>
<p>As such, the primary key when deciding what to do is the <code class="docutils literal notranslate"><span class="pre">InstrAspect</span></code>,
essentially a tuple consisting of <code class="docutils literal notranslate"><span class="pre">(Opcode,</span> <span class="pre">TypeIdx,</span> <span class="pre">Type)</span></code> and mapping to a
suggested course of action.</p>
<p>An example use might be:</p>
<blockquote>
<div><div class="highlight-c++ notranslate"><div class="highlight"><pre><span></span><span class="c1">// The CPU can&#39;t deal with an s1 result, do something about it.</span>
<span class="n">setAction</span><span class="p">({</span><span class="n">G_ICMP</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">s1</span><span class="p">},</span> <span class="n">WidenScalar</span><span class="p">);</span>
<span class="c1">// An s32 input (the second type) is fine though.</span>
<span class="n">setAction</span><span class="p">({</span><span class="n">G_ICMP</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">s32</span><span class="p">},</span> <span class="n">Legal</span><span class="p">);</span>
</pre></div>
</div>
</div></blockquote>
<p><code class="docutils literal notranslate"><span class="pre">TODO</span></code>:
An alternative worth investigating is to generalize the API to represent
actions using <code class="docutils literal notranslate"><span class="pre">std::function</span></code> that implements the action, instead of explicit
enum tokens (<code class="docutils literal notranslate"><span class="pre">Legal</span></code>, <code class="docutils literal notranslate"><span class="pre">WidenScalar</span></code>, …).</p>
<p><code class="docutils literal notranslate"><span class="pre">TODO</span></code>:
Moreover, we could use TableGen to initially infer legality of operation from
existing patterns (as any pattern we can select is by definition legal).
Expanding that to describe legalization actions is a much larger but
potentially useful project.</p>
</div>
<div class="section" id="non-power-of-2-types">
<span id="milegalizer-non-power-of-2"></span><h4><a class="toc-backref" href="#id29">Non-power of 2 types</a><a class="headerlink" href="#non-power-of-2-types" title="Permalink to this headline">¶</a></h4>
<p><code class="docutils literal notranslate"><span class="pre">TODO</span></code>:
Types which have a size that isn’t a power of 2 aren’t currently supported.
The setAction API will probably require changes to support them.
Even notionally explicitly specified operations only make suggestions
like “Widen” or “Narrow”. The eventual type is still unspecified and a
search is performed by repeated doubling/halving of the type’s
size.
This is incorrect for types that aren’t a power of 2.  It’s reasonable to
expect we could construct an efficient set of side-tables for more general
lookups though, encoding a map from the integers (i.e. the size of the current
type) to types (the legal size).</p>
</div>
<div class="section" id="vector-types">
<span id="milegalizer-vector"></span><h4><a class="toc-backref" href="#id30">Vector types</a><a class="headerlink" href="#vector-types" title="Permalink to this headline">¶</a></h4>
<p>Vectors first get their element type legalized: <code class="docutils literal notranslate"><span class="pre">&lt;A</span> <span class="pre">x</span> <span class="pre">sB&gt;</span></code> becomes
<code class="docutils literal notranslate"><span class="pre">&lt;A</span> <span class="pre">x</span> <span class="pre">sC&gt;</span></code> such that at least one operation is legal with <code class="docutils literal notranslate"><span class="pre">sC</span></code>.</p>
<p>This is currently specified by the function <code class="docutils literal notranslate"><span class="pre">setScalarInVectorAction</span></code>, called
for example as:</p>
<blockquote>
<div>setScalarInVectorAction(G_ICMP, s1, WidenScalar);</div></blockquote>
<p>Next the number of elements is chosen so that the entire operation is
legal. This aspect is not controllable at the moment, but probably
should be (you could imagine disagreements on whether a <code class="docutils literal notranslate"><span class="pre">&lt;2</span> <span class="pre">x</span> <span class="pre">s8&gt;</span></code>
operation should be scalarized or extended to <code class="docutils literal notranslate"><span class="pre">&lt;8</span> <span class="pre">x</span> <span class="pre">s8&gt;</span></code>).</p>
</div>
</div>
<div class="section" id="regbankselect">
<span id="id6"></span><h3><a class="toc-backref" href="#id31">RegBankSelect</a><a class="headerlink" href="#regbankselect" title="Permalink to this headline">¶</a></h3>
<p>This pass constrains the <a class="reference internal" href="#gmir-gvregs"><span class="std std-ref">Generic Virtual Registers</span></a> operands of generic
instructions to some <a class="reference internal" href="#gmir-regbank"><span class="std std-ref">Register Bank</span></a>.</p>
<p>It iteratively maps instructions to a set of per-operand bank assignment.
The possible mappings are determined by the target-provided
<a class="reference internal" href="#api-registerbankinfo"><span class="std std-ref">RegisterBankInfo</span></a>.
The mapping is then applied, possibly introducing <code class="docutils literal notranslate"><span class="pre">COPY</span></code> instructions if
necessary.</p>
<p>It traverses the <code class="docutils literal notranslate"><span class="pre">MachineFunction</span></code> top down so that all operands are already
mapped when analyzing an instruction.</p>
<p>This pass could also remap target-specific instructions when beneficial.
In the future, this could replace the ExeDepsFix pass, as we can directly
select the best variant for an instruction that’s available on multiple banks.</p>
<div class="section" id="api-registerbankinfo">
<span id="id7"></span><h4><a class="toc-backref" href="#id32">API: RegisterBankInfo</a><a class="headerlink" href="#api-registerbankinfo" title="Permalink to this headline">¶</a></h4>
<p>The <code class="docutils literal notranslate"><span class="pre">RegisterBankInfo</span></code> class describes multiple aspects of register banks.</p>
<ul class="simple">
<li><strong>Banks</strong>: <code class="docutils literal notranslate"><span class="pre">addRegBankCoverage</span></code> — which register bank covers each
register class.</li>
<li><strong>Cross-Bank Copies</strong>: <code class="docutils literal notranslate"><span class="pre">copyCost</span></code> — the cost of a <code class="docutils literal notranslate"><span class="pre">COPY</span></code> from one bank
to another.</li>
<li><strong>Default Mapping</strong>: <code class="docutils literal notranslate"><span class="pre">getInstrMapping</span></code> — the default bank assignments for
a given instruction.</li>
<li><strong>Alternative Mapping</strong>: <code class="docutils literal notranslate"><span class="pre">getInstrAlternativeMapping</span></code> — the other
possible bank assignments for a given instruction.</li>
</ul>
<p><code class="docutils literal notranslate"><span class="pre">TODO</span></code>:
All this information should eventually be static and generated by TableGen,
mostly using existing information augmented by bank descriptions.</p>
<p><code class="docutils literal notranslate"><span class="pre">TODO</span></code>:
<code class="docutils literal notranslate"><span class="pre">getInstrMapping</span></code> is currently separate from <code class="docutils literal notranslate"><span class="pre">getInstrAlternativeMapping</span></code>
because the latter is more expensive: as we move to static mapping info,
both methods should be free, and we should merge them.</p>
</div>
<div class="section" id="regbankselect-modes">
<span id="id8"></span><h4><a class="toc-backref" href="#id33">RegBankSelect Modes</a><a class="headerlink" href="#regbankselect-modes" title="Permalink to this headline">¶</a></h4>
<p><code class="docutils literal notranslate"><span class="pre">RegBankSelect</span></code> currently has two modes:</p>
<ul class="simple">
<li><strong>Fast</strong> — For each instruction, pick a target-provided “default” bank
assignment.  This is the default at -O0.</li>
<li><strong>Greedy</strong> — For each instruction, pick the cheapest of several
target-provided bank assignment alternatives.</li>
</ul>
<p>We intend to eventually introduce an additional optimizing mode:</p>
<ul class="simple">
<li><strong>Global</strong> — Across multiple instructions, pick the cheapest combination of
bank assignments.</li>
</ul>
<p><code class="docutils literal notranslate"><span class="pre">NOTE</span></code>:
On AArch64, we are considering using the Greedy mode even at -O0 (or perhaps at
backend -O1):  because <a class="reference internal" href="#gmir-llt"><span class="std std-ref">Low Level Type</span></a> doesn’t distinguish floating point from
integer scalars, the default assignment for loads and stores is the integer
bank, introducing cross-bank copies on most floating point operations.</p>
</div>
</div>
<div class="section" id="instructionselect">
<span id="id9"></span><h3><a class="toc-backref" href="#id34">InstructionSelect</a><a class="headerlink" href="#instructionselect" title="Permalink to this headline">¶</a></h3>
<p>This pass transforms generic machine instructions into equivalent
target-specific instructions.  It traverses the <code class="docutils literal notranslate"><span class="pre">MachineFunction</span></code> bottom-up,
selecting uses before definitions, enabling trivial dead code elimination.</p>
<div class="section" id="api-instructionselector">
<span id="id10"></span><h4><a class="toc-backref" href="#id35">API: InstructionSelector</a><a class="headerlink" href="#api-instructionselector" title="Permalink to this headline">¶</a></h4>
<p>The target implements the <code class="docutils literal notranslate"><span class="pre">InstructionSelector</span></code> class, containing the
target-specific selection logic proper.</p>
<p>The instance is provided by the subtarget, so that it can specialize the
selector by subtarget feature (with, e.g., a vector selector overriding parts
of a general-purpose common selector).
We might also want to parameterize it by MachineFunction, to enable selector
variants based on function attributes like optsize.</p>
<p>The simple API consists of:</p>
<blockquote>
<div><div class="highlight-c++ notranslate"><div class="highlight"><pre><span></span><span class="k">virtual</span> <span class="kt">bool</span> <span class="n">select</span><span class="p">(</span><span class="n">MachineInstr</span> <span class="o">&amp;</span><span class="n">MI</span><span class="p">)</span>
</pre></div>
</div>
</div></blockquote>
<p>This target-provided method is responsible for mutating (or replacing) a
possibly-generic MI into a fully target-specific equivalent.
It is also responsible for doing the necessary constraining of gvregs into the
appropriate register classes as well as passing through COPY instructions to
the register allocator.</p>
<p>The <code class="docutils literal notranslate"><span class="pre">InstructionSelector</span></code> can fold other instructions into the selected MI,
by walking the use-def chain of the vreg operands.
As GlobalISel is Global, this folding can occur across basic blocks.</p>
</div>
<div class="section" id="selectiondag-rule-imports">
<h4><a class="toc-backref" href="#id36">SelectionDAG Rule Imports</a><a class="headerlink" href="#selectiondag-rule-imports" title="Permalink to this headline">¶</a></h4>
<p>TableGen will import SelectionDAG rules and provide the following function to
execute them:</p>
<blockquote>
<div><div class="highlight-c++ notranslate"><div class="highlight"><pre><span></span><span class="kt">bool</span> <span class="n">selectImpl</span><span class="p">(</span><span class="n">MachineInstr</span> <span class="o">&amp;</span><span class="n">MI</span><span class="p">)</span>
</pre></div>
</div>
</div></blockquote>
<p>The <code class="docutils literal notranslate"><span class="pre">--stats</span></code> option can be used to determine what proportion of rules were
successfully imported. The easiest way to use this is to copy the
<code class="docutils literal notranslate"><span class="pre">-gen-globalisel</span></code> tablegen command from <code class="docutils literal notranslate"><span class="pre">ninja</span> <span class="pre">-v</span></code> and modify it.</p>
<p>Similarly, the <code class="docutils literal notranslate"><span class="pre">--warn-on-skipped-patterns</span></code> option can be used to obtain the
reasons that rules weren’t imported. This can be used to focus on the most
important rejection reasons.</p>
</div>
<div class="section" id="patleaf-predicates">
<h4><a class="toc-backref" href="#id37">PatLeaf Predicates</a><a class="headerlink" href="#patleaf-predicates" title="Permalink to this headline">¶</a></h4>
<p>PatLeafs cannot be imported because their C++ is implemented in terms of
<code class="docutils literal notranslate"><span class="pre">SDNode</span></code> objects. PatLeafs that handle immediate predicates should be
replaced by <code class="docutils literal notranslate"><span class="pre">ImmLeaf</span></code>, <code class="docutils literal notranslate"><span class="pre">IntImmLeaf</span></code>, or <code class="docutils literal notranslate"><span class="pre">FPImmLeaf</span></code> as appropriate.</p>
<p>There’s no standard answer for other PatLeafs. Some standard predicates have
been baked into TableGen but this should not generally be done.</p>
</div>
<div class="section" id="custom-sdnodes">
<h4><a class="toc-backref" href="#id38">Custom SDNodes</a><a class="headerlink" href="#custom-sdnodes" title="Permalink to this headline">¶</a></h4>
<p>Custom SDNodes should be mapped to Target Pseudos using <code class="docutils literal notranslate"><span class="pre">GINodeEquiv</span></code>. This
will cause the instruction selector to import them but you will also need to
ensure the target pseudo is introduced to the MIR before the instruction
selector. Any preceeding pass is suitable but the legalizer will be a
particularly common choice.</p>
</div>
<div class="section" id="complexpatterns">
<h4><a class="toc-backref" href="#id39">ComplexPatterns</a><a class="headerlink" href="#complexpatterns" title="Permalink to this headline">¶</a></h4>
<p>ComplexPatterns cannot be imported because their C++ is implemented in terms of
<code class="docutils literal notranslate"><span class="pre">SDNode</span></code> objects. GlobalISel versions should be defined with
<code class="docutils literal notranslate"><span class="pre">GIComplexOperandMatcher</span></code> and mapped to ComplexPattern with
<code class="docutils literal notranslate"><span class="pre">GIComplexPatternEquiv</span></code>.</p>
<p>The following predicates are useful for porting ComplexPattern:</p>
<ul class="simple">
<li>isBaseWithConstantOffset() - Check for base+offset structures</li>
<li>isOperandImmEqual() - Check for a particular constant</li>
<li>isObviouslySafeToFold() - Check for reasons an instruction can’t be sunk and folded into another.</li>
</ul>
<p>There are some important points for the C++ implementation:</p>
<ul class="simple">
<li>Don’t modify MIR in the predicate</li>
<li>Renderer lambdas should capture by value to avoid use-after-free. They will be used after the predicate returns.</li>
<li>Only create instructions in a renderer lambda. GlobalISel won’t clean up things you create but don’t use.</li>
</ul>
</div>
</div>
</div>
<div class="section" id="maintainability">
<span id="id11"></span><h2><a class="toc-backref" href="#id15">Maintainability</a><a class="headerlink" href="#maintainability" title="Permalink to this headline">¶</a></h2>
<div class="section" id="iterative-transformations">
<span id="maintainability-iterative"></span><h3>Iterative Transformations<a class="headerlink" href="#iterative-transformations" title="Permalink to this headline">¶</a></h3>
<p>Passes are split into small, iterative transformations, with all state
represented in the MIR.</p>
<p>This differs from SelectionDAG (in particular, the legalizer) using various
in-memory side-tables.</p>
</div>
<div class="section" id="mir-serialization">
<span id="maintainability-mir"></span><h3>MIR Serialization<a class="headerlink" href="#mir-serialization" title="Permalink to this headline">¶</a></h3>
<p><a class="reference internal" href="#gmir"><span class="std std-ref">Generic Machine IR</span></a> is serializable (see <a class="reference internal" href="MIRLangRef.html"><span class="doc">Machine IR (MIR) Format Reference Manual</span></a>).
Combined with <a class="reference internal" href="#maintainability-iterative"><span class="std std-ref">Iterative Transformations</span></a>, this enables much finer-grained
testing, rather than requiring large and fragile IR-to-assembly tests.</p>
<p>The current “stage” in the <a class="reference internal" href="#pipeline"><span class="std std-ref">Core Pipeline</span></a> is represented by a set of
<code class="docutils literal notranslate"><span class="pre">MachineFunctionProperties</span></code>:</p>
<ul class="simple">
<li><code class="docutils literal notranslate"><span class="pre">legalized</span></code></li>
<li><code class="docutils literal notranslate"><span class="pre">regBankSelected</span></code></li>
<li><code class="docutils literal notranslate"><span class="pre">selected</span></code></li>
</ul>
</div>
<div class="section" id="machineverifier">
<span id="maintainability-verifier"></span><h3>MachineVerifier<a class="headerlink" href="#machineverifier" title="Permalink to this headline">¶</a></h3>
<p>The pass approach lets us use the <code class="docutils literal notranslate"><span class="pre">MachineVerifier</span></code> to enforce invariants.
For instance, a <code class="docutils literal notranslate"><span class="pre">regBankSelected</span></code> function may not have gvregs without
a bank.</p>
<p><code class="docutils literal notranslate"><span class="pre">TODO</span></code>:
The <code class="docutils literal notranslate"><span class="pre">MachineVerifier</span></code> being monolithic, some of the checks we want to do
can’t be integrated to it:  GlobalISel is a separate library, so we can’t
directly reference it from CodeGen.  For instance, legality checks are
currently done in RegBankSelect/InstructionSelect proper.  We could #ifdef out
the checks, or we could add some sort of verifier API.</p>
</div>
</div>
<div class="section" id="progress-and-future-work">
<span id="progress"></span><h2><a class="toc-backref" href="#id16">Progress and Future Work</a><a class="headerlink" href="#progress-and-future-work" title="Permalink to this headline">¶</a></h2>
<p>The initial goal is to replace FastISel on AArch64.  The next step will be to
replace SelectionDAG as the optimized ISel.</p>
<p><code class="docutils literal notranslate"><span class="pre">NOTE</span></code>:
While we iterate on GlobalISel, we strive to avoid affecting the performance of
SelectionDAG, FastISel, or the other MIR passes.  For instance, the types of
<a class="reference internal" href="#gmir-gvregs"><span class="std std-ref">Generic Virtual Registers</span></a> are stored in a separate table in <code class="docutils literal notranslate"><span class="pre">MachineRegisterInfo</span></code>,
that is destroyed after <a class="reference internal" href="#instructionselect"><span class="std std-ref">InstructionSelect</span></a>.</p>
<div class="section" id="fastisel-replacement">
<span id="progress-fastisel"></span><h3>FastISel Replacement<a class="headerlink" href="#fastisel-replacement" title="Permalink to this headline">¶</a></h3>
<p>For the initial FastISel replacement, we intend to fallback to SelectionDAG on
selection failures.</p>
<p>Currently, compile-time of the fast pipeline is within 1.5x of FastISel.
We’re optimistic we can get to within 1.1/1.2x, but beating FastISel will be
challenging given the multi-pass approach.
Still, supporting all IR (via a complete legalizer) and avoiding the fallback
to SelectionDAG in the worst case should enable better amortized performance
than SelectionDAG+FastISel.</p>
<p><code class="docutils literal notranslate"><span class="pre">NOTE</span></code>:
We considered never having a fallback to SelectionDAG, instead deciding early
whether a given function is supported by GlobalISel or not.  The decision would
be based on <a class="reference internal" href="#milegalizer"><span class="std std-ref">Legalizer</span></a> queries.
We abandoned that for two reasons:
a) on IR inputs, we’d need to basically simulate the <a class="reference internal" href="#irtranslator"><span class="std std-ref">IRTranslator</span></a>;
b) to be robust against unforeseen failures and to enable iterative
improvements.</p>
</div>
<div class="section" id="support-for-other-targets">
<span id="progress-targets"></span><h3>Support For Other Targets<a class="headerlink" href="#support-for-other-targets" title="Permalink to this headline">¶</a></h3>
<p>In parallel, we’re investigating adding support for other - ideally quite
different - targets.  For instance, there is some initial AMDGPU support.</p>
</div>
</div>
<div class="section" id="porting-globalisel-to-a-new-target">
<span id="porting"></span><h2><a class="toc-backref" href="#id17">Porting GlobalISel to A New Target</a><a class="headerlink" href="#porting-globalisel-to-a-new-target" title="Permalink to this headline">¶</a></h2>
<p>There are four major classes to implement by the target:</p>
<ul class="simple">
<li><a class="reference internal" href="#api-calllowering"><span class="std std-ref">CallLowering</span></a> — lower calls, returns, and arguments
according to the ABI.</li>
<li><a class="reference internal" href="#api-registerbankinfo"><span class="std std-ref">RegisterBankInfo</span></a> — describe
<a class="reference internal" href="#gmir-regbank"><span class="std std-ref">Register Bank</span></a> coverage, cross-bank copy cost, and the mapping of
operands onto banks for each instruction.</li>
<li><a class="reference internal" href="#api-legalizerinfo"><span class="std std-ref">LegalizerInfo</span></a> — describe what is legal, and how
to legalize what isn’t.</li>
<li><a class="reference internal" href="#api-instructionselector"><span class="std std-ref">InstructionSelector</span></a> — select generic MIR
to target-specific MIR.</li>
</ul>
<p>Additionally:</p>
<ul class="simple">
<li><code class="docutils literal notranslate"><span class="pre">TargetPassConfig</span></code> — create the passes constituting the pipeline,
including additional passes not included in the <a class="reference internal" href="#pipeline"><span class="std std-ref">Core Pipeline</span></a>.</li>
</ul>
</div>
<div class="section" id="resources">
<span id="other-resources"></span><h2><a class="toc-backref" href="#id18">Resources</a><a class="headerlink" href="#resources" title="Permalink to this headline">¶</a></h2>
<ul class="simple">
<li><a class="reference external" href="https://www.youtube.com/watch?v=F6GGbYtae3g">Global Instruction Selection - A Proposal by Quentin Colombet &#64;LLVMDevMeeting 2015</a></li>
<li><a class="reference external" href="https://www.youtube.com/watch?v=6tfb344A7w8">Global Instruction Selection - Status by Quentin Colombet, Ahmed Bougacha, and Tim Northover &#64;LLVMDevMeeting 2016</a></li>
<li><a class="reference external" href="https://www.youtube.com/watch?v=d6dF6E4BPeU">GlobalISel - LLVM’s Latest Instruction Selection Framework by Diana Picus &#64;FOSDEM17</a></li>
<li>GlobalISel: Past, Present, and Future by Quentin Colombet and Ahmed Bougacha &#64;LLVMDevMeeting 2017</li>
<li>Head First into GlobalISel by Daniel Sanders, Aditya Nandakumar, and Justin Bogner &#64;LLVMDevMeeting 2017</li>
</ul>
</div>
</div>


          </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="XRay.html" title="XRay Instrumentation"
             >next</a> |</li>
        <li class="right" >
          <a href="Coroutines.html" title="Coroutines in LLVM"
             >previous</a> |</li>
  <li><a href="http://llvm.org/">LLVM Home</a>&nbsp;|&nbsp;</li>
  <li><a href="index.html">Documentation</a>&raquo;</li>
 
      </ul>
    </div>
    <div class="footer" role="contentinfo">
        &#169; Copyright 2003-2020, LLVM Project.
      Last updated on 2020-09-07.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.8.4.
    </div>
  </body>
</html>