Sophie

Sophie

distrib > Mandriva > 2011.0 > i586 > media > contrib-release-debug > by-pkgid > b43fe4c6e31a558117fb60e94a156953 > files > 12

esmtp-debug-1.2-2mdv2011.0.i586.rpm

/**
 * \file list.h
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 * 
 * \author Copied from the linux kernel, file include/linux/list.h.
 */

#ifndef _LIST_H
#define _LIST_H

struct list_head {
	struct list_head *next, *prev;
};

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
	struct list_head name = LIST_HEAD_INIT(name)

#define INIT_LIST_HEAD(ptr) do { \
	(ptr)->next = (ptr); (ptr)->prev = (ptr); \
} while (0)

/**
 * Insert a new entry between two known consecutive entries. 
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_add(struct list_head *new,
			      struct list_head *prev,
			      struct list_head *next)
{
	next->prev = new;
	new->next = next;
	new->prev = prev;
	prev->next = new;
}

/**
 * Add a new entry.
 *
 * \param new new entry to be added
 * \param head list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void list_add(struct list_head *new, struct list_head *head)
{
	__list_add(new, head, head->next);
}

/**
 * Add a new entry.
 * 
 * \param new new entry to be added
 * \param head list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
	__list_add(new, head->prev, head);
}

/**
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_del(struct list_head *prev, struct list_head *next)
{
	next->prev = prev;
	prev->next = next;
}

/**
 * Deletes entry from list.
 *
 * \param entry the element to delete from the list.
 * 
 * \note list_empty on entry does not return true after this, the entry is in an undefined state.
 */
static inline void list_del(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
	entry->next = (void *) 0;
	entry->prev = (void *) 0;
}

/**
 * Deletes entry from list and reinitialize it.
 *
 * \param entry the element to delete from the list.
 */
static inline void list_del_init(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
	INIT_LIST_HEAD(entry); 
}

/**
 * Delete from one list and add as another's head.
 *
 * \param list the entry to move
 * \param head the head that will precede our entry
 */
static inline void list_move(struct list_head *list, struct list_head *head)
{
        __list_del(list->prev, list->next);
        list_add(list, head);
}

/**
 * Delete from one list and add as another's tail.
 *
 * \param list the entry to move
 * \param head the head that will follow our entry
 */
static inline void list_move_tail(struct list_head *list,
				  struct list_head *head)
{
        __list_del(list->prev, list->next);
        list_add_tail(list, head);
}

/**
 * Tests whether a list is empty.
 *
 * \param head the list to test.
 */
static inline int list_empty(struct list_head *head)
{
	return head->next == head;
}

static inline void __list_splice(struct list_head *list,
				 struct list_head *head)
{
	struct list_head *first = list->next;
	struct list_head *last = list->prev;
	struct list_head *at = head->next;

	first->prev = head;
	head->next = first;

	last->next = at;
	at->prev = last;
}

/**
 * Join two lists.
 * 
 * \param list the new list to add.
 * \param head the place to add it in the first list.
 */
static inline void list_splice(struct list_head *list, struct list_head *head)
{
	if (!list_empty(list))
		__list_splice(list, head);
}

/**
 * Join two lists and reinitialise the emptied list.
 *
 * \param list the new list to add.
 * \param head the place to add it in the first list.
 *
 * The list at \p list is reinitialised
 */
static inline void list_splice_init(struct list_head *list,
				    struct list_head *head)
{
	if (!list_empty(list)) {
		__list_splice(list, head);
		INIT_LIST_HEAD(list);
	}
}

/**
 * Get the struct for this entry.
 * 
 * \param ptr the &struct list_head pointer.
 * \param type the type of the struct this is embedded in.
 * \param member the name of the list_struct within the struct.
 */
#define list_entry(ptr, type, member) \
	((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))

/**
 * Iterate over a list.
 *
 * \param pos the struct list_head to use as a loop counter.
 * \param head the head for your list.
 */
#define list_for_each(pos, head) \
	for (pos = (head)->next; pos != (head); \
        	pos = pos->next)
/**
 * Iterate over a list backwards.
 * 
 * \param pos the &struct list_head to use as a loop counter.
 * \param head the head for your list.
 */
#define list_for_each_prev(pos, head) \
	for (pos = (head)->prev; pos != (head); \
        	pos = pos->prev)
        	
/**
 * Iterate over a list safe against removal of list entry.
 * 
 * \param pos the &struct list_head to use as a loop counter.
 * \param n another &struct list_head to use as temporary storage
 * \param head the head for your list.
 */
#define list_for_each_safe(pos, n, head) \
	for (pos = (head)->next, n = pos->next; pos != (head); \
		pos = n, n = pos->next)

/**
 * Iterate over list of given type.
 *
 * \param pos the type * to use as a loop counter.
 * \param head the head for your list.
 * \param member the name of the list_struct within the struct.
 */
#define list_for_each_entry(pos, head, member)				\
	for (pos = list_entry((head)->next, typeof(*pos), member);	\
	     &pos->member != (head); 					\
	     pos = list_entry(pos->member.next, typeof(*pos), member))

#endif